Администрирование схд. Современные технологии дисковых систем хранения данных

Отправить вопрос по решению По будням отвечаем
в течение часа

Андрей Оловянников, a.olovjannikov@сайт

Давайте договоримся….

Целью этой статьи является не подробное изучение различных систем хранения данных (СХД). Мы не будем анализировать всевозможные интерфейсы - программные и аппаратные - которые используются при создании разных способов хранения данных. Не будем рассматривать «узкие места» тех или иных разновидностей организации СХД. Здесь вы не увидите подробного рассмотрения протоколов iSCSI и их реализации в виде FC (Fibre Channel), SCSI и т.д.

Наша задача куда скромнее - просто «Договориться о терминологии» с нашим потенциальным покупателем. Так два физика перед началом обсуждения какой-либо проблемы, приходят к соглашению о том, какой процесс или явление они будут обозначать теми или иными словами. Это необходимо для того, чтобы сэкономить и время и нервные клетки друг друга, и проводить беседу более продуктивно и к взаимному удовольствию.

СХД или… СХД?

Начнем, как говорится, с начала.

Под СХД мы будем понимать все же Системы Хранения Данных как совокупность программно-аппаратных средств, служащих для надежного, максимально скоростного и простого способа хранения и доступа к данным для организаций разного уровня как финансовых, так и структурных особенностей. Сразу хотим обратить ваше внимание, что у различных фирм разные потребности в хранении информации в том или ином виде и разные финансовые возможности для их воплощения. Но в любом случае, хотим отметить, что сколько бы не было денег или специалистов того или иного уровня в распоряжении покупателя, мы настаиваем, что все их потребности укладываются в наше определение СХД - будь то обычный набор дисков большого объема, или сложная многоуровневая структура PCS (Parallels Cloud Storage). Это определение, по нашему мнению, включает в себя и другую широко применяющуюся аббревиатуру, переведенную на английский язык - СХД как Сеть Хранения Данных (Storage Area Network) - SAN. SAN мы немного проиллюстрируем ниже, когда будем рассказывать о типичных способах реализации СХД.

Наиболее типичный и понятный способ исполнения СХД это DAS - Direct Attached Storages - накопители, подключающиеся напрямую к компьтеру, который управляет работой этих накопителей.

Самый простой пример DAS - обычный компьютер с установленным в нем жестким диском или DVD (CD) приводом с данными. Пример посложнее (см. рис) - внешнее устройство-накопитель (внешний жесткий диск, дисковая полка, ленточный накопитель и т.д.), которые общаются с компьютером напрямую посредством того или иного протокола и интерфейса (SCSI, eSATA, FC и т.д.). Мы предлагаем в качестве устройств СХД DAS дисковые полки или Сервера Хранения Данных (еще одна аббревиатура СХД).

Сервер хранения данных в данном случае подразумевает некий компьютер с собственным процессором, ОС и достаточным количеством памяти для обработки больших массивов данных, хранящихся на многочисленных дисках внутри сервера.

Нужно отметить, что при таком воплощении СХД данные напрямую видит только компьютер с DAS, все остальные пользователи имеют доступ к данным только “с разрешения” этого компьютера.

Базовые конфигурации СХД DAS вы можете посмотреть в

Системы хранения NAS

Еще одна достаточно простая реализация СХД - NAS (Network Attached Storage) - Сетевое Хранилище Данных (опять та же аббревиатура СХД).

Как становится понятно, доступ к данным осуществляется посредством сетевых протоколов, как правило, через привычную нам компьютерную локальную сеть (хотя сейчас уже получили распространение и боле сложные доступы к данным, хранящимся на сетевых ресурсах). Самый понятный и простой пример СХД NAS - бытовое хранилище музыки и фильмов, к которому имеют доступ сразу несколько пользователей домашней сети.

NAS хранит данные в виде файловой системы и, соответственно, предоставляет доступ к ресурсам посредством сетевых файловых протоколов (NFS, SMB, AFP…).

Простой пример реализации СХД NAS см. на рис. 2.

Сразу хотим отметить, что NAS в принципе, может считаться любое интеллектуальное устройство, имеющее собственный процессор, память и достаточно быстрые сетевые интерфейсы для передачи данных по сети разным пользователям. Также особое внимание необходимо уделить схорости дисковой подсистемы. Наиболее типичные конфигурации устройств NAS вы можете посмотреть в

Storage Area Network - один из способов реализации СХД как Системы Хранения Данных - см. выше.

Это программно - аппаратное, а также архитектурное решение для подключения различных устройств хранения данных таким образом, что операционная система «видит» эти устройства как локальные. Это достигается посредством подключения этих устройств к соответствующим серверам. Сами устройства могут быть различными - дисковые массивы, ленточные библиотеки, массивы оптических накопителей.

С развитием технологий хранения данных различие между системами SAN и NAS стало весьма условным. Условно их можно различить по способу хранения данных: SAN - блочные устройства, NAS - файловая система данных.

Протоколы реализации систем SAN могут быть различные - Fibre Channel, iSCSI, AoE.

Один из архитектурных способов реализации SAN представлен на рис. 3.

Типичные примеры СХД SAN можно посмотреть в

В заключение, выразим надежду, что нам удалось «договориться о терминологии» с вами и осталось только обсудить варианты создания СХД для вашего бизнеса и подобрать решения, подходящие вам по надежности, простоте и бюджету.

Каково назначение систем хранения данных (СХД)?

Системы хранения данных предназначены для безопасного и отказоустойчивого хранения обрабатываемых данных с возможностями быстрого восстановления доступа к данным в случае сбоя в работе системы.

Какие основные разновидности СХД?

По типу реализации СХД делятся на аппаратные и программные. По области применения СХД делятся на индивидуальные, для малых рабочих групп, для рабочих групп, для предприятий, корпоративные. По типу подключения СХД делятся на:

1. DAS (Direct Attached Storage — системы с прямым подключением)

Особенностью данного типа систем является то, что контроль за доступом к данным для устройств, подключенных к сети, осуществляется сервером или рабочей станцией, к которой подключено хранилище.

2. NAS (Network Attached Storage — системы, подключаемые к ЛВС)

В данном типе систем доступ к информации, размещенной в хранилище, контролируется программным обеспечением, которое работает в самом хранилище.

3. SAN (Storage Attached Network — системы, представляющие собой сеть между серверами, которые обрабатывают данные и, собственно, СХД);

При таком способе построения системы хранения данных контроль за доступом к информации осуществляется программным обеспечением, работающим на серверах СХД. Через коммутаторы SAN производится подключение хранилища к серверам по высокопроизводительным протоколам доступа (Fibre channel, iSCSI, ATA over ethernet, и т.п.)

Каковы особенности программной и аппаратной реализации СХД?

Аппаратная реализация СХД представляет собой единый аппаратный комплекс, состоящий из устройства хранения (представляющего собой диск или массив дисков, на которых данные физически хранятся), и устройства управления (контроллер, занимающийся распределением данных между элементами хранилища).

Программная реализация СХД представляет собой распределенную систему, в которой данные хранятся без привязки к какому-либо конкретному хранилищу или серверу, и доступ к данным осуществляется посредством специализированного ПО, которое отвечает за сохранность и безопасность хранимых данных).

Если Серверы - это универсальные устройства, выполняющие в большинстве случаев
- либо функцию сервера приложения (когда на сервере выполняются специальные программы, и идут интенсивные вычисления),
- либо функцию файл-сервера (т.е. некоего места для централизованного хранения файлов данных)

то СХД (Системы Хранения Данных) - устройства, специально спроектированные для выполнения таких серверных функций, как хранение данных.

Необходимость приобретения СХД
возникает обычно у достаточно зрелых предприятий, т.е. тех, кто задумывается над тем, как
- хранить и управлять информацией, самым ценным активом компании
- обеспечить непрерывность бизнеса и защиту от потери данных
- увеличить адаптируемость ИТ-инфраструктуры

СХД и виртуализация
Конкуренция заставляет компании МСБ работать эффективней, без простоев и с высоким КПД. Смена производственных моделей, тарифных планов, видов услуг происходит всё чаще. Весь бизнез современных компаний "завязан" на информационных технологиях. Потребности бизнеса меняются быстро, и мгновенно отражаются на ИТ - растут требования к надёжности и адаптируемости ИТ-инфраструктуры. Виртуализация предоставляет такие возможности, но для этого нужны недорогие и простые в обслуживании системы хранения данных.

Классификация СХД по типу подключения

DAS . Первые дисковые массивы соединялись с серверами по интерфейсу SCSI. При этом один сервер мог работать только с одним дисковым массивом. Это - прямое соединение СХД (DAS - Direct Attached Storage).

NAS . Для более гибкой организации структуры вычислительного центра - чтобы каждый пользователь мог использовать любую систему хранения - необходимо подключить СХД в локальную сеть. Это - NAS - Network Attached Storage). Но обмен данными между сервером и СХД во много раз более интенсивный чем между клиентом и сервером, поэтому в таком варианте варианте появились объективные трудности, связанные с пропускной способностью сети Ethernet. Да и с точки зрения безопасности не совсем правильно показывать СХД в общую сеть.

SAN . Но можно создать между серверами и СХД свою, отдельную, высокоскоростную сеть. Такую сеть назвали SAN (Storage Area Network). Быстродействие обеспечивается тем, что физической средой передачи там является оптика. Специальные адаптеры (HBA) и оптические FC-коммутаторы обеспечивают передачу данных на скорости 4 и 8Gbit/s. Надёжность такой сети повышалась резервированием (дупликацией) каналов (адаптеров, коммутаторов). Основным недостатком является высокая цена.

iSCSI . С появлением недорогих Ethernet-технологий 1Gbit/s и 10Gbit/s, оптика со скоростью передачи 4Gbit/s уже выглядит не так привлекательно, особенно с учетом цены. Поэтому всё чаще в качестве среды SAN используется протокол iSCSI (Internet Small Computer System Interface). Сеть iSCSI SAN может быть построена на любой достаточно быстрой физической основе, поддерживающей протокол IP.

Классификация Систем Хранения Данныхпо области применения:

класс описание
personal

Чаще всего представляют из себя обычный 3.5" или 2.5" или 1.8" жесткий диск, помещенный в специальный корпус и оснащенный интерфейсами USB и/или FireWire 1394 и/или Ethernet, и/или eSATA.
Таким образом мы имеем переносное устройство, которое может подключаться к компьютеру/серверу и выполнять функции внешнего накопителя. Иногда для удобства в устройство добавляют функции беспроводного доступа, принтерных и USB портов.

small workgroup

Обычно это стационарное или переносное устройство, в которое можно устанавливать несколько (чаще всего от 2 до 5) жестких дисков SATA, с возможностью горячей замены или без, имеющее интерфейс Ethernet. Диски можно организовывать в массивы - RAID различного уровня для достижения высокой надежности хранения и скорости доступа. СХД имеет специализированную ОС, обычно на основе Linux, и позволяет разграничивать уровень доступа по имени и паролю пользователей, организовывать квотирование дискового пространства и т.п.
Такие СХД подходят для небольших рабочих групп, как замена файл-серверов.

workgroup

Устройство, обычно монтируемое в 19" стойку (rack-mount) в которое можно устанавливать 12-24 жестких дисков SATA или SAS с возможностью горячей замены HotSwap. Имеет внешний интерфейс Ethernet, и/или iSCSI. Диски организованы в массивы - RAID для достижения высокой надежности хранения и скорости доступа. СХД поставляется со специализированным программным обеспечением, которое позволяет разграничивать уровень доступа, организовывать квотирование дискового пространства, организовывать BackUp (резервное копирование информации) и т.п.
Такие СХД подходят для средних и крупных предприятий, и используются совместно с одним или несколькими серверами.
enterprise
Стационарное устройство или устройство, монтируемое в 19" стойку (rack-mount) в которое можно устанавливать до сотен жестких дисков.
В дополнение к предыдущему классу СХД могут иметь возможность наращивания, модернизации и замены компонент без остановки системы, системы мониторинга. Программное обеспечение может поддерживать создание "моментальных снимков" и другие "продвинутые" функции.
Такие СХД подходят для больших предприятий и обеспечивают повышенную надежность, скорость и защиту критически важных данных.

high-end enterprise

В дополнение к предыдущему классу СХД может поддерживать тысячи жестких дисков.
Такие СХД занимают несколько 19" кабинетов, общий вес достигает нескольких тонн.
СХД предназначены для безостановочной работы с высочайшей степенью надежности, хранения стратегически важных данных уровня государства/корпораций.

История вопроса.

Первые серверы сочетали в одном корпусе все функции (как компьютеры) - и вычислительные (сервер приложений) и хранение данных (файл-сервер). Но по мере роста потребности приложений в вычислительных мощностях с одной стороны и по мере роста количества обрабатываемых данных с другой стороны - стало просто неудобно размещать все в одном корпусе. Эффективнее оказалось выносить дисковые массивы в отдельные корпуса. Но тут встал вопрос соединения дискового массива с сервером. Первые дисковые массивы соединялись с серверами по интерфейсу SCSI. Но в таком случае один сервер мог работать только с одним дисковым массивом. Народу захотелось более гибкой организации структуры вычислительного центра - чтобы любой сервер мог использовать любую систему хранения. Подключить все устройства напрямую в локальную сеть и организовать обмен данными по Ethernet - конечно, простое и универсальное решение. Но обмен данными между серверами и СХД во много раз более интенсивный чем между клиентами и серверами, поэтому в таком варианте варианте (NAS - см. ниже) появились объективные трудности, связанные с пропускной способностью сети Ethernet. Возникла идея создать между серверами и СХД свою, отдельную высокоскоростную сеть. Такую сеть назвали SAN (см. ниже). Она похожа на Ethernet, только физической средой передачи там является оптика. Там тоже есть адаптеры (HBA), которые устанавливаются в серверы и коммутаторы (оптические). Стандарты на скорость передачи данных по оптике - 4Gbit/s. С появлением технологий Ethernet 1Gbit/s и 10Gbit/s, а также протокола iSCSI всё чаще в качестве среды SAN используется Ethernet.

Именно информация является движущей силой современного бизнеса и в настоящий момент считается наиболее ценным стратегическим активом любого предприятия. Объем информации растет в геометрической прогрессии вместе с ростом глобальных сетей и развитием электронной коммерции. Для достижения успеха в информационной войне необходимо обладать эффективной стратегией хранения, защиты, совместного доступа и управления самым важным цифровым имуществом - данными - как сегодня, так и в ближайшем будущем.

Управление ресурсами хранения данных стало одной из самых животрепещущих стратегических проблем, стоящих перед сотрудниками отделов информационных технологий. Вследствие развития Интернета и коренных изменений в процессах бизнеса информация накапливается с невиданной скоростью. Кроме насущной проблемы обеспечения возможности постоянного увеличения объема хранимой информации, не менее остро на повестке дня стоит и проблема обеспечения надежности хранения данных и постоянного доступа к информации. Для многих компаний формула доступа к данным «24 часа в сутки, 7 дней в неделю, 365 дней в году» стала нормой жизни.

В случае отдельного ПК под системой хранения данных (СХД) можно понимать отдельный внутренний жесткий диск или систему дисков. Если же речь заходит о корпоративной СХД, то традиционно можно выделить три технологии организации хранения данных: Direct Attached Storage (DAS), Network Attach Storage (NAS) и Storage Area Network (SAN).

Direct Attached Storage (DAS)

Технология DAS подразумевает прямое (непосредственное) подключение накопителей к серверу или к ПК. При этом накопители (жесткие диски, ленточные накопители) могут быть как внутренними, так и внешними. Простейший случай DAS-системы - это один диск внутри сервера или ПК. Кроме того, к DAS-системе можно отнести и организацию внутреннего RAID-массива дисков с использованием RAID-контроллера.

Стоит отметить, что, несмотря на формальную возможность использования термина DAS-системы по отношению к одиночному диску или к внутреннему массиву дисков, под DAS-системой принято понимать внешнюю стойку или корзину с дисками, которую можно рассматривать как автономную СХД (рис. 1). Кроме независимого питания, такие автономные DAS-системы имеют специализированный контроллер (процессор) для управления массивом накопителей. К примеру, в качестве такого контроллера может выступать RAID-контроллер с возможностью организации RAID-массивов различных уровней.

Рис. 1. Пример DAS-системы хранения данных

Следует отметить, что автономные DAS-системы могут иметь несколько внешних каналов ввода-вывода, что обеспечивает возможность подключения к DAS-системе нескольких компьютеров одновременно.

В качестве интерфейсов для подключения накопителей (внутренних или внешних) в технологии DAS могут выступать интерфейсы SCSI (Small Computer Systems Interface), SATA, PATA и Fibre Channel. Если интерфейсы SCSI, SATA и PATA используются преимущественно для подключения внутренних накопителей, то интерфейс Fibre Channel применяется исключительно для подключения внешних накопителей и автономных СХД. Преимущество интерфейса Fibre Channel заключается в данном случае в том, что он не имеет жесткого ограничения по длине и может использоваться в том случае, когда сервер или ПК, подключаемый к DAS-системе, находится на значительном расстоянии от нее. Интерфейсы SCSI и SATA также могут использоваться для подключения внешних СХД (в этом случае интерфейс SATA называют eSATA), однако данные интерфейсы имеют строгое ограничение по максимальной длине кабеля, соединяющего DAS-систему и подключаемый сервер.

К основным преимуществам DAS-систем можно отнести их низкую стоимость (в сравнении с другими решениями СХД), простоту развертывания и администрирования, а также высокую скорость обмена данными между системой хранения и сервером. Собственно, именно благодаря этому они завоевали большую популярность в сегменте малых офисов и небольших корпоративных сетей. В то же время DAS-системы имеют и свои недостатки, к которым можно отнести слабую управляемость и неоптимальную утилизацию ресурсов, поскольку каждая DAS-система требует подключения выделенного сервера.

В настоящее время DAS-системы занимают лидирующее положение, однако доля продаж этих систем постоянно уменьшается. На смену DAS-системам постепенно приходят либо универсальные решения с возможностью плавной миграции с NAS-системам, либо системы, предусматривающие возможность их использования как в качестве DAS-, так и NAS- и даже SAN-систем.

Системы DAS следует использовать при необходимости увеличения дискового пространства одного сервера и вынесения его за корпус. Также DAS-системы можно рекомендовать к применению для рабочих станций, обрабатывающих большие объемы информации (например, для станций нелинейного видеомонтажа).

Network Attached Storage (NAS)

NAS-системы - это сетевые системы хранения данных, непосредственно подключаемые к сети точно так же, как и сетевой принт-сервер, маршрутизатор или любое другое сетевое устройство (рис. 2). Фактически NAS-системы представляют собой эволюцию файл-серверов: разница между традиционным файл-сервером и NAS-устройством примерно такая же, как между аппаратным сетевым маршрутизатором и программным маршрутизатором на основе выделенного сервера.

Рис. 2. Пример NAS-системы хранения данных

Для того чтобы понять разницу между традиционным файл-сервером и NAS-устройством, давайте вспомним, что традиционный файл-сервер представляет собой выделенный компьютер (сервер), на котором хранится информация, доступная пользователям сети. Для хранения информации могут использоваться жесткие диски, устанавливаемые в сервер (как правило, они устанавливаются в специальные корзины), либо к серверу могут подключаться DAS-устройства. Администрирование файл-сервера производится с использованием серверной операционной системы. Такой подход к организации систем хранения данных в настоящее время является наиболее популярным в сегменте небольших локальных сетей, однако он имеет один существенный недостаток. Дело в том, что универсальный сервер (да еще в сочетании с серверной операционной системой) - это отнюдь не дешевое решение. В то же время большинство функциональных возможностей, присущих универсальному серверу, в файл-сервере просто не используется. Идея заключается в том, чтобы создать оптимизированный файл-сервер с оптимизированной операционной системой и сбалансированной конфигурацией. Именно эту концепцию и воплощает в себе NAS-устройство. В этом смысле NAS-устройства можно рассматривать как «тонкие» файл-серверы, или, как их иначе называют, файлеры (filers).

Кроме оптимизированной ОС, освобожденной от всех функций, не связанных с обслуживанием файловой системы и реализацией ввода-вывода данных, NAS-системы имеют оптимизированную по скорости доступа файловую систему. NAS-системы проектируются таким способом, что вся их вычислительная мощь фокусируется исключительно на операциях обслуживания и хранения файлов. Сама операционная система располагается во флэш-памяти и предустанавливается фирмой-производителем. Естественно, что с выходом новой версии ОС пользователь может самостоятельно «перепрошить» систему. Подсоединение NAS-устройств к сети и их конфигурирование представляет собой достаточно простую задачу и по силам любому опытному пользователю, не говоря уже о системном администраторе.

Таким образом, в сравнении с традиционными файловыми серверами NAS-устройства являются более производительными и менее дорогими. В настоящее время практически все NAS-устройства ориентированы на использование в сетях Ethernet (Fast Ethernet, Gigabit Ethernet) на основе протоколов TCP/IP. Доступ к устройствам NAS производится с помощью специальных протоколов доступа к файлам. Наиболее распространенными протоколами файлового доступа являются протоколы CIFS, NFS и DAFS.

CIFS (Common Internet File System System - общая файловая система Интернета) - это протокол, который обеспечивает доступ к файлам и сервисам на удаленных компьютерах (в том числе и в Интернет) и использует клиент-серверную модель взаимодействия. Клиент создает запрос к серверу на доступ к файлам, сервер выполняет запрос клиента и возвращает результат своей работы. Протокол CIFS традиционно используется в локальных сетях с ОС Windows для доступа к файлам. Для транспортировки данных CIFS использует TCP/IP-протокол. CIFS обеспечивает функциональность, похожую на FTP (File Transfer Protocol), но предоставляет клиентам улучшенный контроль над файлами. Он также позволяет разделять доступ к файлам между клиентами, используя блокирование и автоматическое восстановление связи с сервером в случае сбоя сети.

Протокол NFS (Network File System - сетевая файловая система) традиционно применяется на платформах UNIX и представляет собой совокупность распределенной файловой системы и сетевого протокола. В протоколе NFS также используется клиент-серверная модель взаимодействия. Протокол NFS обеспечивает доступ к файлам на удаленном хосте (сервере) так, как если бы они находились на компьютере пользователя. Для транспортировки данных NFS использует протокол TCP/IP. Для работы NFS в Интернeте был разработан протокол WebNFS.

Протокол DAFS (Direct Access File System - прямой доступ к файловой системе) - это стандартный протокол файлового доступа, который основан на NFS. Данный протокол позволяет прикладным задачам передавать данные в обход операционной системы и ее буферного пространства напрямую к транспортным ресурсам. Протокол DAFS обеспечивает высокие скорости файлового ввода-вывода и снижает загрузку процессора благодаря значительному уменьшению количества операций и прерываний, которые обычно необходимы при обработке сетевых протоколов.

DAFS проектировался с ориентацией на использование в кластерном и серверном окружении для баз данных и разнообразных Интернет-приложений, ориентированных на непрерывную работу. Он обеспечивает наименьшие задержки доступа к общим файловым ресурсам и данным, а также поддерживает интеллектуальные механизмы восстановления работоспособности системы и данных, что делает его привлекательным для использования в NAS-системах.

Резюмируя вышеизложенное, NAS-системы можно рекомендовать для использования в мультиплатформенных сетях в случае, когда требуется сетевой доступ к файлам и достаточно важными факторами являются простота установки администрирования системы хранения данных. Прекрасным примером является применение NAS в качестве файл-сервера в офисе небольшой компании.

Storage Area Network (SAN)

Собственно, SAN - это уже не отдельное устройство, а комплексное решение, представляющее собой специализированную сетевую инфраструктуру для хранения данных. Сети хранения данных интегрируются в виде отдельных специализированных подсетей в состав локальной (LAN) или глобальной (WAN) сети.

По сути, SAN-сети связывают один или несколько серверов (SAN-серверов) с одним или несколькими устройствами хранения данных. SAN-сети позволяют любому SAN-серверу получать доступ к любому устройству хранения данных, не загружая при этом ни другие серверы, ни локальную сеть. Кроме того, возможен обмен данными между устройствами хранения данных без участия серверов. Фактически SAN-сети позволяют очень большому числу пользователей хранить информацию в одном месте (с быстрым централизованным доступом) и совместно использовать ее. В качестве устройств хранения данных могут использоваться RAID-массивы, различные библиотеки (ленточные, магнитооптические и др.), а также JBOD-системы (массивы дисков, не объединенные в RAID).

Сети хранения данных начали интенсивно развиваться и внедряться лишь с 1999 года.

Подобно тому как локальные сети в принципе могут строиться на основе различных технологий и стандартов, для построения сетей SAN также могут применяться различные технологии. Но точно так же, как стандарт Ethernet (Fast Ethernet, Gigabit Ethernet) стал стандартом де-факто для локальный сетей, в сетях хранения данных доминирует стандарт Fibre Channel (FC). Собственно, именно развитие стандарта Fibre Channel привело к развитию самой концепции SAN. В то же время необходимо отметить, что все большую популярность приобретает стандарт iSCSI, на основе которого тоже возможно построение SAN-сетей.

Наряду со скоростными параметрами одним из важнейших преимуществ Fibre Channel является возможность работы на больших расстояниях и гибкость топологии. Концепция построения топологии сети хранения данных базируется на тех же принципах, что и традиционные локальные сети на основе коммутаторов и маршрутизаторов, что значительно упрощает построение многоузловых конфигураций систем.

Стоит отметить, что для передачи данных в стандарте Fibre Channel используются как оптоволоконные, так и медные кабели. При организации доступа к территориально удаленным узлам на расстоянии до 10 км используется стандартная аппаратура и одномодовое оптоволокно для передачи сигнала. Если же узлы разнесены на большее расстояние (десятки или даже сотни километров), применяются специальные усилители.

Топология SAN-сети

Типичный вариант SAN-сети на основе стандарта Fibre Channel показан на рис. 3. Инфраструктуру такой SAN-сети составляют устройства хранения данных с интерфейсом Fibre Channel, SAN-серверы (серверы, подключаемые как к локальной сети по интерфейсу Ethernet, так и к SAN-сети по интерфейсу Fiber Channel) и коммутационная фабрика (Fibre Channel Fabric), которая строится на основе Fibre Channel-коммутаторов (концентраторов) и оптимизирована для передачи больших блоков данных. Доступ сетевых пользователей к системе хранения данных реализуется через SAN-серверы. При этом важно, что трафик внутри SAN-сети отделен от IP-трафика локальной сети, что, безусловно, позволяет снизить загрузку локальной сети.

Рис. 3. Типичная схема SAN-сети

Преимущества SAN-сетей

К основным преимуществам технологии SAN можно отнести высокую производительность, высокий уровень доступности данных, отличную масштабируемость и управляемость, возможность консолидации и виртуализации данных.

Коммутационные фабрики Fiber Channel с неблокирующей архитектурой позволяют реализовать одновременный доступ множества SAN-серверов к устройствам хранения данных.

В архитектуре SAN данные могут легко перемещаться с одного устройства хранения данных на другое, что позволяет оптимизировать размещение данных. Это особенно важно в том случае, когда нескольким SAN-серверам требуется одновременный доступ к одним и тем же устройствам хранения данных. Отметим, что процесс консолидации данных невозможен в случае использования других технологий, как, например, при применении DAS-устройств, то есть устройств хранения данных, непосредственно подсоединяемых к серверам.

Другая возможность, предоставляемая архитектурой SAN, - это виртуализация данных. Идея виртуализации заключается в том, чтобы обеспечить SAN-серверам доступ не к отдельным устройствам хранения данных, а к ресурсам. То есть серверы должны «видеть» не устройства хранения данных, а виртуальные ресурсы. Для практической реализации виртуализации между SAN-серверами и дисковыми устройствами может размещаться специальное устройство виртуализации, к которому с одной стороны подключаются устройства хранения данных, а с другой - SAN-серверы. Кроме того, многие современные FC-коммутаторы и HBA-адаптеры предоставляют возможность реализации виртуализации.

Следующая возможность, предоставляемая SAN-сетями, - это реализация удаленного зеркалирования данных. Принцип зеркалирования данных заключается в дублировании информации на несколько носителей, что повышает надежность хранения информации. Примером простейшего случая зеркалирования данных может служить объединение двух дисков в RAID-массив уровня 1. В данном случае одна и та же информация записывается одновременно на два диска. Недостатком такого способа можно считать локальное расположение обоих дисков (как правило, диски находятся в одной и той же корзине или стойке). Сети хранения данных позволяют преодолеть этот недостаток и предоставляют возможность организации зеркалирования не просто отдельных устройств хранения данных, а самих SAN-сетей, которые могут быть удалены друг от друга на сотни километров.

Еще одно преимущество SAN-сетей заключается в простоте организации резервного копирования данных. Традиционная технология резервного копирования, которая используется в большинстве локальных сетей, требует выделенного Backup-сервера и, что особенно важно, выделенной полосы пропускания сети. Фактически во время операции резервного копирования сам сервер становится недоступным для пользователей локальной сети. Собственно, именно поэтому резервное копирование производится, как правило, в ночное время.

Архитектура сетей хранения данных позволяет принципиально по-иному подойти к проблеме резервного копирования. В этом случае Backup-сервер является составной частью SAN-сети и подключается непосредственно к коммутационной фабрике. В этом случае Backup-трафик оказывается изолированным от трафика локальной сети.

Оборудование, используемое для создания SAN-сетей

Как уже отмечалось, для развертывания SAN-сети требуются устройства хранения данных, SAN-серверы и оборудование для построения коммутационной фабрики. Коммутационные фабрики включают как устройства физического уровня (кабели, коннекторы), так и устройства подключения (Interconnect Device) для связи узлов SAN друг с другом, устройства трансляции (Translation devices), выполняющие функции преобразования протокола Fibre Channel (FC) в другие протоколы, например SCSI, FCP, FICON, Ethernet, ATM или SONET.

Кабели

Как уже отмечалось, для соединения SAN-устройств стандарт Fibre Channel допускает использование как волоконно-оптических, так и медных кабелей. При этом в одной SAN-сети могут применяться различные типы кабелей. Медный кабель используется для коротких расстояний (до 30 м), а волоконно-оптический - как для коротких, так и для расстояний до 10 км и больше. Применяют как многомодовый (Multimode), так и одномодовый (Singlemode) волоконно-оптические кабели, причем многомодовый используется для расстояний до 2 км, а одномодовый - для больших расстояний.

Сосуществование различных типов кабелей в пределах одной SAN-сети обеспечивается посредством специальных конверторов интерфейсов GBIC (Gigabit Interface Converter) и MIA (Media Interface Adapter).

В стандарте Fibre Channel предусмотрено несколько возможных скоростей передачи (см. таблицу). Отметим, что в настоящее время наиболее распространены FC-устройства стандартов 1, 2 и 4 GFC. При этом обеспечивается обратная совместимость более скоростных устройств с менее скоростными, то есть устройство стандарта 4 GFC автоматически поддерживает подключение устройств стандартов 1 и 2 GFC.

Устройства подключения (Interconnect Device)

В стандарте Fibre Channel допускается использование различных сетевых топологий подключения устройств, таких как «точка-точка» (Point-to-Point), кольцо с разделяемым доступом (Arbitrated Loop, FC-AL) и коммутируемая связная архитектура (switched fabric).

Топология «точка-точка» может применяться для подключения сервера к выделенной системе хранения данных. В этом случае данные не используются совместно с серверами SAN-сети. Фактически данная топология является вариантом DAS-системы.

Для реализации топологии «точка-точка», как минимум, необходим сервер, оснащенный адаптером Fibre Channel, и устройство хранения данных с интерфейсом Fibre Channel.

Топология кольца с разделенным доступом (FC-AL) подразумевает схему подключения устройств, при котором данные передаются по логически замкнутому контуру. При топологии кольца FC-AL в качестве устройств подключения могут выступать концентраторы или коммутаторы Fibre Channel. При использовании концентраторов полоса пропускания делится между всеми узлами кольца, в то время как каждый порт коммутатора предоставляет протокольную полосу пропускания для каждого узла.

На рис. 4 показан пример кольца Fibre Channel с разделением доступа.

Рис. 4. Пример кольца Fibre Channel с разделением доступа

Конфигурация аналогична физической звезде и логическому кольцу, используемым в локальных сетях на базе технологии Token Ring. Кроме того, как и в сетях Token Ring, данные перемещаются по кольцу в одном направлении, но, в отличие от сетей Token Ring, устройство может запросить право на передачу данных, а не ждать получения пустого маркера от коммутатора. Кольца Fibre Channel с разделением доступа могут адресовать до 127 портов, однако, как показывает практика, типичные кольца FC-AL содержат до 12 узлов, а после подключения 50 узлов производительность катастрофически снижается.

Топология коммутируемой связной архитектуры (Fibre Channel switched-fabric) реализуется на базе Fibre Channel-коммутаторов. В данной топологии каждое устройство имеет логическое подключение к любому другому устройству. Фактически Fibre Channel-коммутаторы связной архитектуры выполняют те же функции, что и традиционные Ethernet-коммутаторы. Напомним, что, в отличие от концентратора, коммутатор - это высокоскоростное устройство, которое обеспечивает подключение по схеме «каждый с каждым» и обрабатывает несколько одновременных подключений. Любой узел, подключенный к Fibre Channel-коммутатору, получает протокольную полосу пропускания.

В большинстве случаев при создании крупных SAN-сетей используется смешанная топология. На нижнем уровне применяются FC-AL-кольца, подключенные к малопроизводительным коммутаторам, которые, в свою очередь, подключаются к высокоскоростным коммутаторам, обеспечивающим максимально возможную пропускную способность. Несколько коммутаторов могут быть соединены друг с другом.

Устройства трансляции

Устройства трансляции являются промежуточными устройствами, выполняющими преобразование протокола Fibre Channel в протоколы более высоких уровней. Эти устройства предназначены для соединения Fibre Channel-сети с внешней WAN-сетью, локальной сетью, а также для присоединения к Fibre Channel-сети различных устройств и серверов. К таким устройствам относятся мосты (Bridge), Fibre Channel-адаптеры (Host Bus Adapters (HBA), маршрутизаторы, шлюзы и сетевые адаптеры. Классификация устройств трансляции показана на рис. 5.

Рис. 5. Классификация устройств трансляции

Наиболее распространенными устройствами трансляции являются HBA-адаптеры с интерфейсом PCI, которые применяются для подключения серверов к сети Fibre Channel. Сетевые адаптеры позволяют подключать локальные Ethernet-сети к сетям Fibre Channel. Мосты используются для подключения устройств хранения данных с SCSI интерфейсом к сети на базе Fibre Channel. Cледует отметить, что в последнее время практически все устройства хранения данных, которые предназначены для применения в SAN, имеют встроенный Fibre Channel и не требуют использования мостов.

Устройства хранения данных

В качестве устройств хранения данных в SAN-сетях могут использоваться как жесткие диски, так и ленточные накопители. Если говорить о возможных конфигурациях применения жестких дисков в качестве устройств хранения данных в SAN-сетях, то это могут быть как массивы JBOD, так и RAID-массивы дисков. Традиционно устройства хранения данных для SAN-сетей выпускаются в виде внешних стоек или корзин, оснащенных специализированным RAID-контроллером. В отличие от NAS- или DAS-устройств, устройства для SAN-систем оснащаются Fibre Channel-интерфейсом. При этом сами диски могут иметь как SCSI-, так и SATA-интерфейс.

Кроме устройств хранения на основе жестких дисков, в SAN-сетях широкое применение находят ленточные накопители и библиотеки.

SAN-серверы

Серверы для сетей SAN отличаются от обычных серверов приложений только одной деталью. Кроме сетевого Ethernet-адаптера, для взаимодействия сервера с локальной сетью они оснащаются HBA-адаптером, что позволяет подключать их к SAN-сетям на основе Fibre Channel.

Системы хранения данных компании Intel

Далее мы рассмотрим несколько конкретных примеров устройств хранения данных компании Intel. Строго говоря, компания Intel не выпускает законченных решений и занимается разработкой и производством платформ и отдельных компонентов для построения систем хранения данных. На основе данных платформ многие компании (в том числе и целый ряд российских компаний) производят уже законченные решения и продают их под своими логотипами.

Intel Entry Storage System SS4000-E

Система хранения данных Intel Entry Storage System SS4000-E представляет собой NAS-устройство, предназначенное для применения в небольших и средних офисах и многоплатформенных локальных сетях. При использовании системы Intel Entry Storage System SS4000-E разделяемый сетевой доступ к данным получают клиенты на основе Windows-, Linux- и Macintosh-платформ. Кроме того, Intel Entry Storage System SS4000-E может выступать как в роли DHCP-сервера, так и DHCP-клиента.

Система хранения данных Intel Entry Storage System SS4000-E представляет собой компактную внешнюю стойку с возможностью установки до четырех дисков с интерфейсом SATA (рис. 6). Таким образом, максимальная емкость системы может составлять 2 Тбайт при использовании дисков емкостью 500 Гбайт.

Рис. 6. Система хранения данных Intel Entry Storage System SS4000-E

В системе Intel Entry Storage System SS4000-E применяется SATA RAID-контроллер с поддержкой уровней RAID-массивов 1, 5 и 10. Поскольку данная система является NAS-устройством, то есть фактически «тонким» файл-сервером, система хранения данных должна иметь специализированный процессор, память и прошитую операционную систему. В качестве процессора в системе Intel Entry Storage System SS4000-E применяется Intel 80219 с тактовой частотой 400 МГц. Кроме того, система оснащена 256 Мбайт памяти DDR и 32 Мбайт флэш-памяти для хранения операционной системы. В качестве операционной системы используется Linux Kernel 2.6.

Для подключения к локальной сети в системе предусмотрен двухканальный гигабитный сетевой контроллер. Кроме того, имеются также два порта USB.

Устройство хранения данных Intel Entry Storage System SS4000-E поддерживает протоколы CIFS/SMB, NFS и FTP, а настройка устройства реализуется с использованием web-интерфейса.

В случае применения Windows-клиентов (поддерживаются ОС Windows 2000/2003/XP) дополнительно имеется возможность реализации резервного копирования и восстановления данных.

Intel Storage System SSR212CC

Система Intel Storage System SSR212CC представляет собой универсальную платформу для создания систем хранения данных типа DAS, NAS и SAN. Эта система выполнена в корпусе высотой 2 U и предназначена для монтажа в стандартную 19-дюймовую стойку (рис. 7). Система Intel Storage System SSR212CC поддерживает установку до 12 дисков с интерфейсом SATA или SATA II (поддерживается функция горячей замены), что позволяет наращивать емкость системы до 6 Тбайт при использовании дисков емкостью по 550 Гбайт.

Рис. 7. Система хранения данных Intel Storage System SSR212CC

Фактически система Intel Storage System SSR212CC представляет собой полноценный высокопроизводительный сервер, функционирующий под управлением операционных систем Red Hat Enterprise Linux 4.0, Microsoft Windows Storage Server 2003, Microsoft Windows Server 2003 Enterprise Edition и Microsoft Windows Server 2003 Standard Edition.

Основу сервера составляет процессор Intel Xeon с тактовой частотой 2,8 ГГц (частота FSB 800 МГц, размер L2-кэша 1 Мбайт). Система поддерживает использование памяти SDRAM DDR2-400 с ECC максимальным объемом до 12 Гбайт (для установки модулей памяти предусмотрено шесть DIMM-слотов).

Система Intel Storage System SSR212CC оснащена двумя RAID-контроллерами Intel RAID Controller SRCS28Xs с возможностью создания RAID-массивов уровней 0, 1, 10, 5 и 50. Кроме того, система Intel Storage System SSR212CC имеет двухканальный гигабитный сетевой контроллер.

Intel Storage System SSR212MA

Система Intel Storage System SSR212MA представляет собой платформу для создания систем хранения данных в IP SAN-сетях на основе iSCSI.

Данная система выполнена в корпусе высотой 2 U и предназначена для монтажа в стандартную 19-дюймовую стойку. Система Intel Storage System SSR212MA поддерживает установку до 12 дисков с интерфейсом SATA (поддерживается функция горячей замены), что позволяет наращивать емкость системы до 6 Тбайт при использовании дисков емкостью по 550 Гбайт.

По своей аппаратной конфигурации система Intel Storage System SSR212MA не отличается от системы Intel Storage System SSR212CC.

В данной статье, мы рассмотрим, какие виды систем хранения данных (СХД) на сегодняшнее время существуют, так же рассмотрю одни из основных компонентов СХД – внешние интерфейсы подключения (протоколы взаимодействия) и накопители, на которых хранятся данные. Так же проведем их общее сравнение по предоставляемым возможностям. Для примеров мы буду ссылаться на линейку СХД, представляемую компанией DELL.

  • Примеры моделей DAS
  • Примеры моделей NAS
  • Примеры моделей SAN
  • Типы носителей информации и протокол взаимодействия с системами хранения данных Протокол Fibre Channel
  • Протокол iSCSI
  • Протокол SAS
  • Сравнение протоколов подключения систем хранения данных

Существующие типы систем хранения данных

В случае отдельного ПК под системой хранения данных можно понимать внутренний жесткий диск или систему дисков (RAID массив). Если же речь заходит о системах хранения данных разного уровня предприятий, то традиционно можно выделить три технологии организации хранения данных:

  • Direct Attached Storage (DAS);
  • Network Attach Storage (NAS);
  • Storage Area Network (SAN).

Устройства DAS (Direct Attached Storage) – решение, когда устройство для хранения данных подключено непосредственно к серверу, или к рабочей станции, как правило, через интерфейс по протоколу SAS.

Устройства NAS (Network Attached Storage) – отдельно стоящая интегрированная дисковая система, по-сути, NAS-cервер, со своей специализированной ОС и набором полезных функций быстрого запуска системы и обеспечения доступа к файлам. Система подключается к обычной компьютерной сети (ЛВС), и является быстрым решением проблемы нехватки свободного дискового пространства, доступного для пользователей данной сети.

Storage Area Network (SAN) –это специальная выделенная сеть, объединяющая устройства хранения данных с серверами приложений, обычно строится на основе протокола Fibre Channel или протокола iSCSI.

Теперь давайте более детально рассмотрим каждый из приведенных выше типов СХД, их положительные и отрицательные стороны.

Архитектура системы хранения DAS (Direct Attached Storage)

К основным преимуществам DAS систем можно отнести их низкую стоимость (в сравнении с другими решениями СХД), простоту развертывания и администрирования, а также высокую скорость обмена данными между системой хранения и сервером. Собственно, именно благодаря этому они завоевали большую популярность в сегменте малых офисов, хостинг-провайдеров и небольших корпоративных сетей. В то же время DAS-системы имеют и свои недостатки, к которым можно отнести неоптимальную утилизацию ресурсов, поскольку каждая DAS система требует подключения выделенного сервера и позволяет подключить максимум 2 сервера к дисковой полке в определенной конфигурации.

Рисунок 1: Архитектура Direct Attached Storage

  • Достаточно низкая стоимость. По сути эта СХД представляет собой дисковую корзину с жесткими дисками, вынесенную за пределы сервера.
  • Простота развертывания и администрирования.
  • Высокая скорость обмена между дисковым массивом и сервером.
  • Низкая надежность. При выходе из строя сервера, к которому подключено данное хранилище, данные перестают быть доступными.
  • Низкая степень консолидации ресурсов – вся ёмкость доступна одному или двум серверам, что снижает гибкость распределения данных между серверами. В результате необходимо закупать либо больше внутренних жестких дисков, либо ставить дополнительные дисковые полки для других серверных систем
  • Низкая утилизация ресурсов.

Примеры моделей DAS

Из интересных моделей устройств этого типа хотелось бы отметить модельный ряд DELL PowerVaultсерии MD. Начальные модели дисковых полок (JBOD) MD1000 и MD1120 позволяют создавать дисковые массивы c количеством диском до 144-х. Это достигается за счет модульности архитектуры, в массив можно подключить вплоть до 6 устройств, по три дисковых полки на каждый канал RAID-контроллера. Например, если использовать стойку из 6 DELL PowerVault MD1120, то реализуем массив с эффективным объемом данных 43,2 ТБ. Подобные дисковые полки подключаются одним или двумя кабелями SAS к внешним портам RAID-контроллеров, установленных в серверах Dell PowerEdge и управляются консолью управления самого сервера.

Если же есть потребность в создании архитектуры с высокой отказоустойчивостью, например, для создания отказоустойчивого кластера MS Exchange, SQL-сервера, то для этих целей подойдет модельDELL PowerVault MD3000. Это система уже имеет активную логику внутри дисковой полки и полностью избыточна за счет использования двух встроенных контроллеров RAID, работающих по схеме «актвиный-активный» и имеющих зеркалированную копию буферизованных в кэш-памяти данных.

Оба контроллера параллельно обрабатывают потоки чтения и записи данных, и в случае неисправности одного из них, второй «подхватывает» данные с соседнего контроллера. При этом подключение к низко уровнему SAS-контроллеру внутри 2-х серверов (кластеру) может производиться по нескольким интерфейсам (MPIO), что обеспечивает избыточность и балансировку нагрузки в средах Microsoft. Для наращивания дискового пространства к PowerVault MD3000 можно подключить 2-е дополнительные дисковые полки MD1000.

Архитектура системы хранения NAS (Network Attached Storage)

Технология NAS (сетевые подсистемы хранения данных, Network Attached Storage) развивается как альтернатива универсальным серверам, несущим множество функций (печати, приложений, факс сервер, электронная почта и т.п.). В отличие от них NAS-устройства исполняют только одну функцию — файловый сервер. И стараются сделать это как можно лучше, проще и быстрее.

NAS подключаются к ЛВС и осуществляют доступ к данным для неограниченного количества гетерогенных клиентов (клиентов с различными ОС) или других серверов. В настоящее время практически все NAS устройства ориентированы на использование в сетях Ethernet (Fast Ethernet, Gigabit Ethernet) на основе протоколов TCP/IP. Доступ к устройствам NAS производится с помощью специальных протоколов доступа к файлам. Наиболее распространенными протоколами файлового доступа являются протоколы CIFS, NFS и DAFS. Внутри подобных серверов стоят специализированные ОС, такие как MS Windows Storage Server.

Рисунок 2: Архитектура Network Attached Storage

  • Дешевизна и доступность его ресурсов не только для отдельных серверов, но и для любых компьютеров организации.
  • Простота коллективного использования ресурсов.
  • Простота развертывания и администрирования
  • Универсальность для клиентов (один сервер может обслуживать клиентов MS, Novell, Mac, Unix)
  • Доступ к информации через протоколы “сетевых файловых систем” зачастую медленнее, чем как к локальному диску.
  • Большинство недорогих NAS-серверов не позволяют обеспечить скоростной и гибкий метод доступа к данным на уровне блоков, присущих SAN системам, а не на уровне файлов.

Примеры моделей NAS

В настоящий момент классические NAS решения, такие как PowerVault NF100/500/600 . Это системы на базе массовых 1 и 2-х процессорных серверов Dell, оптимизированных для быстрого развертывания NAS-сервисов. Они позволяют создавать файловое хранилище вплоть до 10 ТБ (PowerVault NF600) используя SATA или SAS диски, и подключив данный сервер к ЛВС. Также имеются и более высокопроизводительные интегрированные решение, например PowerVault NX1950 , вмещающие в себя 15 дисков и расширяемые до 45 за счет подключения дополнительных дисковых полок MD1000.

Серьезным преимуществом NX1950 является возможность работать не только с файлами, но и с блоками данных на уровне протокола iSCSI. Также разновидность NX1950 может работать как «гейтвэй», позволяющий организовать файловый доступ к СХД на базе iSCSI (c блочным методом доступа), например MD3000i или к Dell EqualLogic PS5x00.

Архитектура системы хранения SAN (Storage Area Network)

Storage Area Network (SAN) — это специальная выделенная сеть, объединяющая устройства хранения данных с серверами приложений, обычно строится на основе протокола Fibre Channel, либо на набирающем обороты протоколу iSCSI. В отличие от NAS, SAN не имеет понятия о файлах: файловые операции выполняются на подключенных к SAN серверах. SAN оперирует блоками, как некий большой жесткий диск. Идеальный результат работы SAN — возможность доступа любого сервера под любой операционной системой к любой части дисковой емкости, находящейся в SAN. Оконечные элементы SAN — это серверы приложений и системы хранения данных (дисковые массивы, ленточные библиотеки и т. п.). А между ними, как и в обычной сети, находятся адаптеры, коммутаторы, мосты, концентраторы. ISCSI является более «дружелюбным» протоколом, поскольку он основан на использовании стандартной инфраструктуры Ethernet – сетевых карт, коммутаторов, кабелей. Более того, именно системы хранения данных на базе iSCSI являются наиболее популярными для виртуализированных серверов, в силу простоты настройки протокола.

Рисунок 3: Архитектура Storage Area Network

  • Высокая надёжность доступа к данным, находящимся на внешних системах хранения. Независимость топологии SAN от используемых СХД и серверов.
  • Централизованное хранение данных (надёжность, безопасность).
  • Удобное централизованное управление коммутацией и данными.
  • Перенос интенсивного трафика ввода-вывода в отдельную сеть, разгружая LAN.
  • Высокое быстродействие и низкая латентность.
  • Масштабируемость и гибкость логической структуры SAN
  • Возможность организации резервных, удаленных СХД и удаленной системы бэкапа и восстановления данных.
  • Возможность строить отказоустойчивые кластерные решения без дополнительных затрат на базе имеющейся SAN.
  • Более высокая стоимость
  • Сложность в настройке FC-систем
  • Необходимость сертификации специалистов по FC-сетям (iSCSI является более простым протоколом)
  • Более жесткие требования к совместимости и валидации компонентов.
  • Появление в силу дороговизны DAS-«островов» в сетях на базе FC-протокола, когда на предприятиях появляются одиночные серверы с внутренним дисковым пространством, NAS-серверы или DAS-системы в силу нехватки бюджета.

Примеры моделей SAN

В настоящий момент имеется достаточно большой выбор дисковых массивов для построения SAN, начиная от моделей для малых и средних предприятий, такие как серия DELL AX, которые позволяют создавать хранилища емкостью до 60 Тбайт, и заканчивая дисковыми массивами для больших корпораций DELL/EMC серии CX4, они позволяют создать хранилища емкостью до 950 Тб. Есть недорогое решение на основе iSCSI, это PowerVault MD3000i – решение позволяет подключать до 16-32 серверов, в одно устройство можно установить до 15 дисков, и расширить систему двумя полками MD1000, создав массив на 45Тб.

Отдельного упоминания заслуживает система Dell EqualLogic на базе протокола iSCSI. Она позиционируется как СХД масштаба предприятия и сравнима по цене с системами Dell | EMC CX4, с модульной архитектурой портов, поддерживающих как FC протокол, так и iSCSI протокол. Система EqualLogic является одноранговой, т.е каждая дисковая полка имеет активные контроллеры RAID. При подключении этих массивов в единую систему, производительность дискового пула плавно растет с ростом доступного объема хранения данных. Система позволяет создать массивы более 500TB, настраивается менее, чем за час, и не требует специализированных знаний администраторов.

Модель лицензирования также отличается от остальных и уже включает в первоначальную стоимость все возможные опции моментальных копий, репликацию и средства интеграции в различные ОС и приложения. Эта система считается одной из наиболее быстрых систем в тестах для MS Exchange (ESRP).

Типы носителей информации и протокол взаимодействия с СХД

Определившись с типом СХД, который Вам наиболее подходит для решения тех или иных задач, необходимо перейти к выбору протокола взаимодействия с СХД и выбору накопителей, которые будут использоваться в системе хранения.

В настоящий момент для хранения данных в дисковых массивах используются SATA и SAS диски. Какие диски выбрать в хранилище зависит от конкретных задач. Стоит отметить несколько фактов.

SATA II диски:

  • Доступны объемы одного диска до 1 ТБ
  • Скорость вращения 5400-7200 RPM
  • Скорость ввода/вывода до 2,4 Гбит/с
  • Время наработки на отказ примерно в два раза меньше чем у SAS дисков.
  • Менее надежные, чем SAS диски.
  • Дешевле примерно в 1,5 раза, чем SAS-диски.
  • Доступны объемы одного диска до 450 ГБ
  • Скорость вращения 7200 (NearLine), 10000 и 15000 RPM
  • Скорость ввода/вывода до 3,0 Гбит/с
  • Время наработки на отказ в два раза больше чем у SATA II дисков.
  • Более надежные диски.

Важно! В прошлом году начался промышленный выпуск SAS дисков с пониженной скоростью вращения – 7200 rpm (Near-line SAS Drive). Это позволило повысить объем хранимых данных на одном диске до 1 ТБ и снизить энергопторебление дисков со скоростным интерфейсом. При том, что стоимость таких дисков сравнима со стоимостью дисков SATA II, а надежность и скорость ввода/вывода осталась на уровне SAS дисков.

Таким образом, в настоящий момент стоит действительно серьезно задуматься над протоколами хранения данных, которые вы собираетесь использовать в рамках корпоративной СХД.

До недавнего времени основными протоколами взаимодействия с СХД являлись – FibreChannel и SCSI. Сейчас на смену SCSI, расширив его функционал, пришли протоколы iSCSI и SAS. Давайте ниже рассмотрим плюсы и минусы каждого из протоколов и соответствующих интерфейсов подключения к СХД.

Протокол Fibre Channel

На практике современный Fibre Channel (FC) имеет скорости 2 Гбит/Сек (Fibre Channel 2 Gb), 4 Гбит/Сек (Fibre Channel 4 Gb) full- duplex или 8 Гбит/Сек, то есть такая скорость обеспечивается одновременно в обе стороны. При таких скоростях расстояния подключения практически не ограничены – от стандартных 300 метров на самом «обычном» оборудовании до нескольких сотен или даже тысяч километров при использовании специализированного оборудования. Главный плюс протокола FC – возможность объединения многих устройств хранения и хостов (серверов) в единую сеть хранения данных (SAN). При этом не проблема распределенности устройств на больших расстояниях, возможность агрегирования каналов, возможность резервирования путей доступа, «горячего подключения» оборудования, большая помехозащищенность. Но с другой стороны мы имеем высокую стоимость, и высокую трудоемкость инсталляции и обслуживания дисковых массивов использующих FC.

Важно! Следует разделять два термина протокол Fibre Channel и оптоволоконный интерфейс Fiber Channel. Протокол Fibre Сhannel может работать на разных интерфейсах — и на оптоволоконном соединении с разной модуляцией, и на медных соединениях.

  • Гибкая масштабируемость СХД;
  • Позволяет создавать СХД на значительных расстояниях (но меньших, чем в случае iSCSI протокола; где, в теории, вся глобальная IP сеть может выступать носителем.
  • Большие возможности резервирования.
  • Высокая стоимость решения;
  • Еще более высокая стоимость при организации FC-сети на сотни или тысячи километров
  • Высокая трудоемкость при внедрении и обслуживании.

Важно! Помимо появления протокола FC8 Гб/c, ожидается появление протокола FCoE (Fibre Channel over Ethernet), который позволит использовать стандартные IP сети для организации обмена пакетами FC.

Протокол iSCSI

Протокол iSCSI (инкапсуляция SCSI пакетов в протокол IP) позволяет пользователям создать сети хранения данных на базе протокола IP с использованием Ethernet-инфраструктуры и портов RJ45. Таким образом, протокол iSCSI дает возможность обойти те ограничения, которыми характеризуются хранилища данных с непосредственным подключением, включая невозможность совместного использования ресурсов через серверы и невозможность расширения емкости без отключения приложений. Скорость передачи на данный момент ограничена 1 Гб/c (Gigabit Ethernet), но данная скорость является достаточной для большинства бизнес-приложений масштаба средних предприятий и это подтверждают многочисленные тесты. Интересно то, что важна не столько скорость передачи данных на одном канале, сколько алгоритмы работы RAID контроллеров и возможность агрегации массивов в единый пул, как в случае с DELL EqualLogic, когда используются по три 1Гб порта на каждом массиве, и идет балансировка нагрузки среди массивов одной группы.

Важно отметить, что сети SAN на базе протокола iSCSI обеспечивают те же преимущества, что и сети SAN с использованием протокола Fibre Channel, но при этом упрощаются процедуры развертывания и управления сетью, и значительно снижаются стоимостные затраты на данную СХД.

  • Высокая доступность;
  • Масштабируемость;
  • Простота администрирования, так как используется технология Ethernet;
  • Более низкая цена организации SAN на протоколе iSCSI, чем на FC.
  • Простота интеграции в среды виртуализации
  • Есть определенные ограничения по использованию СХД с протоколом iSCSI с некоторыми OLAP и OLTP приложениями, с системами Real Time и при работе с большим числом видеопотоков в HD формате
  • Высокоуровневые СХД на базе iSCSI, также как и CХД c FC-протоколом, требуют использования быстрых, дорогостоящих Ethernet-коммутаторов
  • Рекомендуется использование либо выделенных Ethernet коммутаторов, либо организация VLAN для разделения потоков данных. Дизайн сети является не менее важной частью проекта, чем при разработке FC-сетей.

Важно! В скором времени производители обещают выпустить в серийное производство SAN на базе протокола iSCSI с поддержкой скоростей передачи данных до 10 Гб/c. Также готовится финальная версия протокола DCE (Data Center Ethernet), массовое появление устройств, поддерживающих протокол DCE, ожидается к 2011 году.

C точки зрения используемых интерфейсов, протокол iSCSI задействует интерфейсы Ethernet 1Гбит/C, а ими могут быть как медные, так оптоволоконные интерфейсы при работе на больших расстояниях.

Протокол SAS

Протокол SAS и одноименный интерфейс разработаны для замены параллельного SCSI и позволяет достичь более высокой пропускной способности, чем SCSI. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. SAS позволяет обеспечить физическое подключение между массивом данных и несколькими серверами на небольшие расстояния.

  • Приемлемая цена;
  • Легкость консолидации хранилищ – хотя СХД на базе SAS не может подключаться к такому количеству хостов (серверов), как SAN конфигурации которые используют протоколы FC или iSCSI, но при использовании протокола SAS не возникает трудностей с дополнительным оборудованием для организации общего хранилища для нескольких серверов.
  • Протокол SAS позволяет обеспечить большую пропускную способность с помощью 4 канальных соединений внутри одного интерфейса. Каждый канал обеспечивает 3 Гб/c , что позволяет достичь скорости передачи данных 12 Гб/с (в настоящий момент это наивысшая скорость передачи данных для СХД).
  • Ограниченность досягаемости – длинна кабеля не может превышать 8 метров. Тем самым хранилища с подключением по протоколу SAS, будут оптимальны только тогда когда серверы и массивы будут расположены в одной стойке или в одной серверной;
  • Количество подключаемых хостов (серверов) как правило, ограничено несколькими узлами.

Важно! В 2009 году ожидается появление технологии SAS со скоростью передачи данных по одному каналу – 6 Гбит/c, что позволит значительно увеличить привлекательность использования данного протокола.

Сравнение протоколов подключения СХД

Ниже приведена сводная таблица сравнения возможностей различных протоколов взаимодействия с СХД.

Параметр

Протоколы подключения СХД

Архитектура SCSI команды инкапсулируются в IP пакет и передаются через Ethernet, последовательная передача Последовательная передача SCSI команд Коммутируемая
Растояние между дисковым массивом и узлом (сервер или свитч) Ограничено лишь расстоянием IP cетей. Не более 8 метров между устройствами. 50.000 метров без использования специализрованных рипитеров
Масштабируемость Миллионы устройств – при работе по протоколу IPv6. 32 устройства 256 устройств
16 миллионов устройств, если использовать FC-SW (fabric switches) архитектура
Производительность 1 Гб/с (планируется развитие до 10 Гб/с) 3 Гб/с при использовании 4х портов, до 12 Гб/с (в 2009 году до 6 Гб/с по одному порту) До 8 Гб/с
Уровень вложений (затрат на внедрение) Незначительный – используется Ethernet Средний Значительный

Таким образом, представленные решения на первый взгляд достаточно четко разделяются по соответствию требованиям заказчиков. Однако на практике все не так однозначно, включаются дополнительные факторы в виде ограничений по бюджетам, динамики развития организации (и динамики увеличения объема хранимой информации), отраслевая специфика и т.д.



Статьи по теме: