Способы разделения сигналов. Частотное разделение сигналов Фазовое разделение сигналов

При частотном разделении каналов (ЧРК) каждое из подлежащих передаче сообщений занимает полосу частот стандартного канала ТЧ. В процессе формирования группового сигнала каждому канальному сигналу отводится неперекрывающаяся со спектрами других сигналов полоса частот . Тогда общая полоса частот N -канальной группы будет равна . Считая, что применяется однополосная модуляция и каждый канальный сигнал занимает полосу частот , для спектра группового сигнала получим

Групповой сигнал преобразуется в линейный сигнал s л (t) и передается по линии связи (тракту передачи). На приемной стороне после преобразования линейного сигнала в групповой, последний с помощью полосовых канальных фильтров Ф К (см. рис. 11.1) с полосой пропускания и демодуляторов Д К преобразуется в канальное сообщение , которое направляется получателям сообщений.

На вход приемного устройства i –го канала одновременно действуют сигналы всех N каналов. Чтобы без взаимных помех разделить сигналы, каждый из фильтров Ф i должен пропускать без ослабления только те частоты, которые принадлежат данному i –му каналу; частоты сигналов всех других каналов фильтр Ф i должен подавлять. За счет неидеальности характеристик полосовых канальных фильтров возникают взаимные переходные помехи между каналами. Для снижения этих помех до допустимого уровня необходимо вводить защитные частотные интервалы между каналами . В современных системах многоканальной телефонной связи каждому каналу выделяется полоса частот 4 кГц, хотя частотный спектр передаваемых речевых сигналов ограничивается полосой 300…3400 Гц, т. е. ширина спектра сигнала составляет 3,1 кГц. Таким образом, в данном случае = 0,9 кГц. Это означает, что в многоканальных системах с ЧРК эффективно используется примерно 80% полосы пропускания тракта передачи. Кроме того, необходимо обеспечить очень высокую степень линейности всего группового тракта.

При временном разделении каналов (ВРК) групповой тракт с помощью синхронных коммутаторов передатчика и приемника поочередно предоставляется для передачи сигналов каждого канала многоканальной системы. Структурная схема многоканальной системы передачи с ВРК приведена на рис.11.2.

В качестве канальных сигналов в системах с ВРК используются неперекрывающиеся во времени последовательности модулированных импульсов (например, по амплитуде). Совокупность канальных сигналов образует групповой сигнал.

При временном разделении также возможны переходные помехи между каналами, которые в основном обусловлены двумя причинами. Первой причиной является неидеальность АЧХ и ФЧХ тракта передачи, а второй – неидеальность синхронизации коммутаторов на передающей и приемной стороне. Для снижения уровня взаимных помех при ВРК также приходится вводить защитные временные интервалы. Это требует уменьшения длительности импульса каждого канала и, как следствие, расширения спектра сигналов. Так, в многоканальных системах телефонной связи полоса эффективно используемых частот F В =3100 Гц. В соответствии с теоремой отсчетов Котельникова минимальное значение частоты дискретизации f Д = 2f В = 6200 Гц. Однако в реальных системах выбирают f Д =8 кГц (с запасом).


Теоретически ВРК и ЧРК эквивалентны по эффективности использования частотного спектра, однако в реальных условиях системы с ВРК несколько уступают системам с ЧРК по этому показателю из-за трудностей снижения уровня взаимных помех при разделении сигналов. Однако системы с ВРК имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов различных каналов в них отсутствуют переходные помехи нелинейного происхождения. В системах ВРК ниже пик-фактор. Кроме того, аппаратура ВРК значительно проще аппаратуры ЧРК. Наиболее широкое применение ВРК находит в цифровых системах передачи с ИКМ.

Частным случаем временного разделения является разделение сигналов по фазе , при котором можно обеспечить лишь двухканальную передачу .

В общем случае сигналы, занимающие общую полосу частот и передаваемые одновременно, могут быть разделены, если выполняется условие их линейной независимости или условие ортогональности .

Этим требованиям удовлетворяют сигналы, различающиеся по форме . В цифровых многоканальных системах с разделением по форме используют ортогональные последовательности в виде функций Уолша. Обобщением разделения по форме, являются асинхронно-адресные системы связи (ААСС). В таких системах легко реализуются резервы пропускной способности, возникающие за счет «мало активных» абонентов. Так, например, можно организовать 1000-канальную систему связи, в которой одновременно ведут передачу любые 50-100 абонентов из тысячи .

При комбинированном методе разделения групповой сигнал представляет собой отображение определенных комбинаций дискретных канальных сообщений посредством чисел, соответствующих номеру комбинации. Эти числа могут передаваться с помощью сигналов дискретной модуляции любого вида. Например, для двоичных кодов (m=2) и числе каналов N=2 групповое сообщение может принимать возможных значения, соответствующих различным комбинациям нулей и единиц:00, 01, 10, 11. Для N -канальных систем потребуется различных значений модулируемого параметра (частоты, фазы). В общем случае можно модулировать одновременно несколько параметров переносчика, например, амплитуду и фазу, частоту и фазу и т. д. Структурная схема многоканальной системы с комбинационным (кодовым) разделением (уплотнением) представлена на рис.11.3.

Рис.11.3. Структурная схема многоканальной системы с комбинационным уплотнением

В последнее время большой интерес проявляется к системам амплитудно-фазовой модуляции (АФМ), которые можно реализовать схемой квадратурной модуляции. В системах АФМ в течение интервала передачи одного элементарного сигнала его фаза и амплитуда принимают значения, выбранные из ряда возможных дискретных значений амплитуд и фаз. Каждая комбинация значений амплитуды и фазы отображает один из многопозиционных сигналов группового сигнала с основанием кода . Сигналы АФМ можно формировать также путем многоуровневой амплитудной и фазовой модуляции двух квадратурных (сдвинутых по фазе на ) колебаний несущей частоты .

В последние годы успешно развивается также теория сигнально-кодовых конструкций (СКК), направленная на повышение скорости передачи и помехоустойчивости при существенных ограничениях на энергетику и занимаемую полосу частот. Вопросы теории СКК рассмотрены в главе 11 .

Кодовое разделение и демодуляция сигналов в системах радиосвязи


1. ПРИНЦИП РАБОТЫ СИСТЕМ РАДИОСВЯЗИ С КОДОВЫМ РАЗДЕЛЕНИЕМ СИГНАЛОВ

Принцип работы системы сотовой связи с кодовым разделением каналов можно пояснить на таком простом примере. Предположим, что вы находитесь в большом ресторане или магазине, где непрерывно разговаривают на разных языках. Несмотря на окружающий шум (многоголосье), вы понимаете своего партнера, если он говорит на одном с вами языке. На самом деле, в отличие от других цифровых систем, которые делят отведенный диапазон на узкие каналы по частотному (FDMA) или временному (TDMA) признаку, в стандарте CDMA передаваемую информацию кодируют и код превращают в шумоподобный широкополосный сигнал так, что его можно выделить снова, только располагая кодом на приемной стороне. При этом одновременно в широкой полосе частот можно передавать и принимать множество сигналов, которые не мешают друг другу. Центральными понятиями метода многостанционного доступа с кодовым разделением каналов в реализации компании Oualcomm являются расширение спектра методом прямой последовательности (Direct Sequence Spread Spectrum), кодирование по Уолшу (Walsh Coding) и управление мощностью.

Широкополосной называется система, которая передает сигнал, занимающий очень широкую полосу частот, значительно превосходящую ту минимальную ширину полосы частот, которая фактически требуется для передачи информации. Так например, низкочастотный сигнал может быть передан с помощью амплитудной модуляции (AM) в полосе частот, в 2 раза превосходящей полосу частот этого сигнала. Другие виды модуляции, такие как частотная модуляция (ЧМ) с малой девиацией и однополосная AM, позволяют осуществить передачу информации в полосе частот, сравнимой с полосой частот информационного сигнала. В широкополосной системе исходный модулирующий сигнал (например, сигнал телефонного канала) с полосой всего несколько килогерц распределяют в полосе частот, ширина которой может быть несколько мегагерц. Последнее осуществляется путем двойной модуляции несущей передаваемым информационным сигналом и широкополосным кодирующим сигналом.

Основной характеристикой широкополосного сигнала является его база В, определяемая как произведение ширины спектра сигнала F на его период Т.

В результате перемножения сигнала источника псевдослучайного шума с информационным сигналом энергия последнего распределяется в широкой полосе частот, т. е. его спектр расширяется.

Метод широкополосной передачи был открыт К.Е, Шенноном, который первым ввел понятие пропускной способности канала и установил связь между возможностью осуществления безошибочной передачи информации по каналу с заданным отношением сигнал/шум и полосой частот, отведенной для передачи информации. Для любого заданного отношения сигнал/шум малая частота ошибок при передаче достигается при увеличении полосы частот, отводимой для передачи информации.

Следует отметить, что сама информация может быть введена в широкополосный сигнал несколькими способами. Наиболее известный способ заключается в наложении информации на широкополосную модулирующую кодовую последовательность перед модуляцией несущей для получения широкополосного шумоподобного сигнала ШПС (рис. 1).

Узкополосный сигнал умножается на псевдослучайную последовательность (ПСП) с периодом Т, состоящую из N бит длительностью r 0 каждый. В этом случае база ШПС численно равна количеству элементов ПСП.


Этот способ пригоден для любой широкополосной системы, в которой для расширения спектра высокочастотного сигнала применяется цифровая последовательность.

Сущность широкополосной связи состоит в расширении полосы частот сигнала, передаче широкополосного сигнала и выделении из него полезного сигнала путем преобразования спектра принятого широкополосного сигнала в первоначальный спектр информационного сигнала.

Перемножение принятого сигнала и сигнала такого же источника псевдослучайного шума (ПСП), который использовался в передатчике, сжимает спектр полезного сигнала и одновременно расширяет спектр фонового шума и других источников интерференционных помех. Результирующий выигрыш в отношении сигнал/шум на выходе приемника есть функция отношения ширины полос широкополосного и базового сигналов: чем больше расширение спектра, тем больше выигрыш. Во временной области - это функция отношения скорости передачи цифрового потока в радиоканале к скорости передачи базового информационного сигнала. Для стандарта IS-95 отношение составляет 128 раз, или 21 дБ. Это позволяет системе работать при уровне интерференционных помех, превышающих уровень полезного сигнала на 18 дБ, так как обработка сигнала на выходе приемника требует превышения уровня сигнала над уровнем помех всего на 3 дБ. В реальных условиях уровень помех значительно меньше. Кроме того, расширение спектра сигнала (до 1,23 МГц) можно рассматривать как применение методов частотного разнесения приема. Сигнал при распространении в радиотракте подвергается замираниям вследствие многолучевого характера распространения. В частотной области это явление можно представить как воздействие режекторного фильтра с изменяющейся шириной полосы режекции (обычно не более чем на 300 кГц). В стандарте AMPS это соответствует подавлению десяти каналов, а в системе CDMA подавляется лишь около 25% спектра сигнала, что не вызывает особых затруднений при восстановлении сигнала в приемнике.

2. ИСПОЛЬЗОВАНИЕ СОГЛАСОВАННЫХ ФИЛЬТРОВ ДЛЯ ДЕМОДУЛЯЦИИ СЛОЖНЫХ СИГНАЛОВ

Составные сигналы, используемые в системах с кодовым разделением каналов, помимо большой базы, характеризуются большой избыточностью, поскольку все элементарные сигналы, служащие для передачи одного символа двоичного кода, переносят одну и ту же информацию.

Прием этих сигналов, как и прием любых сигналов с избыточностью, можно осуществлять поэлементно или в целом. Для систем, где применяются ШПС, характерен прием в целом. Только при обработке составного сигнала в целом возможно, в частности, осуществить раздельный прием лучей при многолучевом распространении и реализовать полностью другие преимущества связи посредством ШПС.

Прием ШПС, как, впрочем, и любых других сигналов осуществляется с помощью оптимальных приемников, минимизирующих вероятность ошибки. Известно, что структура оптимального приемника зависит от вида модуляции, а также от того, какое количество параметров сигнала известно в точке приема (когерентный или некогерентный прием и т.п.). Однако в любом случае в состав оптимального приемника входит коррелятор или согласованный фильтр и решающее устройство. Рассмотрим использование СФ для приема фазоманипулированных шумоподобных сигналов ФМШПС (рис.2), являющихся широко распространенной разновидностью сложных сигналов.

Согласованный фильтр (рис.2) согласован с ШПС, который переносит информацию.

Если использовать ШПС Uk(t), то импульсная реакция СФ

где а - некоторая постоянная; Т - длительность ШПС.

Допустим, что для передачи "1" информационной последовательности используется сигнал Uk(t), а для передачи "О" используется противоположный сигнал -Uk(t) (передача (активной паузой).

В качестве ШПС выберем код Баркера (Nэ=7). Тогда

Форма сигнала Uk(t) показана на рис.3. Согласованные фильтры могут быть аналоговыми и дискретными. Многочастотные ШПС обрабатываются в многоканальных СФ, а для составных сигналов типа ФМШПС используют СФ, которые строятся на основе многоотводной линии задержки (МЛЗ). В качестве МЛЗ применяют отрезки коаксиального кабеля, ультразвуковые линии задержки с использованием поверхностных акустических волн (ПАВ). Известны также дискретно-аналоговые СФ на приборах с зарядовой связью (ПЗС). Полоса пропускания МЛЗ должна быть не меньше ширины спектра ШПС.


Если в дискретном СФ отсчеты преобразовать с помощью АЦП в кодовые группы, то фильтр превращается в цифровой СФ. Для реализации цифровых СФ предполагается использовать специализированные большие и сверхбольшие интегральные микросхемы (БИС и СБИС). Согласованный фильтр обладает свойством инвариантности относительно амплитуды, временного положения и начальной фазы сигнала.

На рис.3 представлен аналоговый линейный СФ на МЛЗ. Вследствие показанному на рис.3 включению фазовращателей (ФВ) такой фильтр согласован с кодовой последовательностью Бартера (N Э =7).


Подобный метод приема можно использовать тогда, когда известны форма сигнала Uk(t), момент начала и окончания интервала и несущая частота ВЧ колебания. Неизвестна только начальная фаза несущей, но она одинакова у всех элементов составного сигнала (рис.2). В этом случае говорят о некогерентном приеме с когерентным накоплением. Некогерентность приема связана с тем, что на вход стробирующего устройства СУ подается не сам сигнал, а его огибающая. Таким образом, СФ реализует оптимальный метод приема известного сигнала с неопределенной фазой.

На рис.4,а показано напряжение на выходе СФ Ucф(t), которое повторяет в масштабе реального времени автокорреляционную функцию ШПС, с которым согласован фильтр. Сравнение рис.2 с рис.4,а позволяет убедиться в том, что СФ оказывает значительное влияние на ШПС, и отклик фильтра, повторяя АКФ сигнала, мало похож на сам сигнал, действующий на входе СФ.

На рис.4, 6 представлено напряжение на выходе детектора огибающей.

В системах телемеханики для передачи многих сигналов по одной линии связи применение обычного кодирования показывается недостаточным. Необходимо либо дополнительное разделение сигналов, либо специальное кодирование, которое включает в себя элементы разделения сигналов. Разделение сигналов - обеспечение независимой передачи и приема многих сигналов по одной линии связи или в одной полосе частот, при котором сигналы сохраняют свои свойства и не искажают друг друга.

Сейчас применяются следующие способы:

1. Временное разделение, при котором сигналы передаются последовательно во времени, поочередно используя одну и ту же полосу частот;

2. Кодово-адресное разделение, осуществляемое на базе временного (реже частотного) разделение сигналов с посылкой кода адреса;

3. Частотное разделение, при котором каждому из сигналов присваивается своя частота и сигналы передаются последовательно или параллельно во времени;

4. Частотно-временное разделение, позволяющее использовать преимущества как частотного, так и временного разделения сигналов;

5. Фазовое разделение, при котором сигналы отличаются друг от друга фазой.

Временное разделение (ВР). Каждому из n - сигналов линия предоставляется поочередно: сначала за промежуток времени t 1 передается сигнал 1, за t 2 - сигнал 2 и т.д. При этом каждый сигнал занимает свой временной интервал. Время, которое отводится для передачи всех сигналов, называется циклом. Полоса частот для передачи сигналов определяется самым коротким импульсом в кодовой комбинации. Между информационными временными интервалами необходимы защитные временные интервалы во избежание взаимного влияния канала на канал т.е. проходных искажений.

Для осуществления временного разделения используют распределители, один из которых устанавливают на пункте управления, а другой - на исполнительном пункте.

Кодово - адресное разделение сигналов (КАР). Используют временное кодово-адресное разделение сигналов (ВКАР), при этом сначала передается синхронизирующий импульс или кодовая комбинация (синхрокомбинация) для обеспечения согласованной работы распределителей на пункте управления и контролируемом пункте. Далее посылается кодовая комбинация, называемая кодом адреса. Первые символы кода адреса предназначены для выбора контролируемого пункта и объекта, последние образуют адрес функции, в котором указывается, какая ТМ - операция (функция) должна выполняться (ТУ, ТИ и т.п.). После этого следует кодовая комбинация самой операции, т.е. передается командная информация или принимается известительная информация.

Частотное разделение сигналов. Для каждого из n - сигналов выдается своя полоса в частотном диапазоне. На приемном пункте (КП) каждый из посланных сигналов выделяется сначала полосовым фильтром, затем подается на демодулятор, затем на исполнительные реле. Можно передавать сигналы последовательно или одновременно, т.е. параллельно.

Фазовое разделение сигналов. На одной частоте передается несколько сигналов в виде радиоимпульсов с различными начальными фазами. Для этого используется относительная или фазорастностная манипуляция.

Частотно-временное разделение сигналов. Заштрихованные квадраты с номерами - это сигналы, передаваемые в определенной полосе частот и в выделенном интервале времени. Между сигналами имеются защитные временные интервалы и полосы частот. Число образуемых сигналов при этом значительно увеличивается.

24. Основные виды помех в каналах и трактах проводных МСП(многоканальной системы передачи) с ЧРК(частотным разделением каналов).

Под помехой будем понимать всякое случайное воздействие на сигнал в канале связи, препятствующее правильному приему сигналов. При этом следует подчеркнуть случайный характер воздействия, так как борьба с регулярными помехами не представляет затруднений (во всяком случае, теоретически). Так например, фон переменного тока или помеха от определенной радиостанции могут быть устранены компенсацией или фильтрацией. В каналах связи действуют как аддитивные помехи, т. е. случайные процессы, налагающиеся на передаваемые сигналы, так и мультипликативные помехи, выражающиеся в случайных изменениях характеристик канала.

На выходе непрерывного канала всегда действуют гауссовские помехи. К таким помехам, в частности, относится тепловой шум. Эти помехи неустранимы. Модель непрерывного канала, вклю­чающая в себя закон композиции сигнала s(t), четырёхполюсник с импульсной характеристикой g(t, ) и источник аддитивных гауссовских помех (t).

Более полная модель должна учитывать другие типы аддитивных (аддитивные – суммарные) помех, нелинейные искажения сигнала, а также мультипликативные помехи.

Перейдем к краткой характеристике перечисленных выше помех.

Сосредоточенные по спектру, или гармонические, помехи представляют собой узкополосный модулированный сигнал. Причинами возникновения таких помех являются снижение переходного затухания между цепями кабеля, влияние радиостанций и т. п.

Импульсные помехи - это помехи, сосредоточенные по времени. Они представляют собой случайную последовательность импульсов, имеющих случайные амплитуды и следующих друг за другом через случайные интервалы времени, причем вызванные ими переходные процессы не перекрываются во времени. Причины появления этих помех: коммутационные шумы, наводки с высоковольтных линий, грозовые разряды и т. п. Нормирование импульсных помех в канале ТЧ производится путем ограничения времени превышения ими заданных порогов анализа.

Флуктуационная (случайная) помеха характеризуется широким спектром и максимальной энтропией, и поэтому с ней труднее всего бороться. Однако в проводных каналах связи уровень флуктуационных по­мех достаточно мал и они при малой удельной скорости передачи информации практически не влияют на коэффициент ошибок.

Мультипликативные (умножения на сигнал) помехи обусловлены случайными изменениями параметров канала связи. В частности, эти помехи проявляются в изменении уровня сигнала на выходе демодулятора. Различают плавные и скачкообразные изменения уровня. Плав­ные изменения происходят за время, которое намного больше, чем 0 – длительность единичного элемента; скачкообразные - за время, меньшее 0 . Причиной плавных изменений уровня могут быть колебания затухания линии связи, вызванные, например, изменением состояния погоды, а в радиоканалах - замирания. Причиной скачкообразных изменений уровня могут быть плохие контакты в аппаратуре, несовершенство эксплуатации аппаратуры связи, технологии измерений и др.

Снижение уровня более, чем 17,4 дБ ниже номинального, на­зывается перерывом. При перерыве уровень падает ниже порога чувствительности приемника и прием сигналов фактически прекращается. Перерывы длительностью меньше 300 мс принято называть кратковременными, больше 300 мс - длительными.

Импульсные помехи и перерывы являются основной причиной появления ошибок при передаче дискретных сообщений по про­водным каналам связи.

Аддитивные помехи содержат три составляющие: сосредоточенную по частоте (гармоническую), сосредоточенную во времени (импульсную) и флуктуационную. Помеха, сосредоточенная по частоте, имеет спектр значительно уже полосы пропускания канала. Импульсная помеха представляет собой последовательность кратковременных импульсов, разделенных интервалами, превышающими время переходных процессов в ка­нале. Флуктуационную помеху можно представить как последовательность непрерывно следующих один за другим импульсов, имеющую широкий спектр, выходящий за пределы полосы пропускания канала. Импульсную помеху можно рассматривать как крайний случай флуктуационной, когда её энергия сосредоточена в отдельных точках временной оси, а гармоническую помеху - как другой крайний случай, когда вся энергия сосредоточена в отдельных точках частотной оси.

Характеристиками аддитивных помех в каналах ТЧ являются псофометрическая мощность шума и уровень не взвешенного шума. Первая величина измеряется прибором с квадратичным детектором и специальным контуром, учитывающим чувствительность человеческого уха, микрофона и телефона к напряжениям различных частот. Средняя величина псофометрической мощности составляет 2*10-15 Вт/м. Не взвешенный шум измеряют прибором с квадратичным детектором, имеющим время интегрирования 200 мс. Эта величина в точке с относительным нулевым уровнем не должна превышать -49 дБ на одном участке переприёма. Указанные характеристики не охватывают импульсные шумы, которые измеряют отдельно и специальными приборами. Мультипликативные помехи в каналах связи выражаются в основном в изменении остаточного затухания, приводящего к изменениям уровня сигнала. Изменения уровня сигнала в реальных каналах связи весьма разнообразны по своему характеру. Так, например, различают плавные и скачкообразные изменения уровня сигнала (иногда их называют изменениями остаточного затухания), кратковременные занижения уровня, кратковременные и длительные перерывы.

Плавными изменениями уровня называют такие, при которых отклонение уровня от своего номинального значения до максимального (минимального) происходит за время, несоизмеримо большее длительности единичных элементов передаваемого сигнала т0. К скачкообразным изменениям уровня относятся те, при которых изменение уровня от значения рН0М до рМАКС происходит за время, соизмеримое с временем единичного интервала 0.

Исследования показали, что за длительный промежуток времени отклонения уровня от номинального значения происходят как в сторону повышения, так и в сторону понижения, при этом оба направления изменения имеют примерно равную вероятность. Изменения такого рода могут быть отнесены к числу медленных изменений остаточного затухания. Наряду с ними имеют место быстрые, сравнительно кратковременные изменения остаточного затухания, в основном приводящие к уменьшению уровня приема. Значительные занижения уровня сигнала приводят к искажениям принимаемых сигналов и, как следствие, к ошибкам. Занижения уровня сигнала уменьшают его помехозащищенность, что также вызывает рост числа ошибок. И, наконец, в синхронных системах снижение уровня сигнала приводит к нарушению работы синхронизации и затрате определенного времени на вхождение, в режим синхронизации при восстановлении нормального уровня. Поэтому в современных системах ПДИ имеются специальные устройства, которые блокируют приемник и его систему синхронизации при уменьшении уровня сигнала ниже заданного значения - П. По этой причине занижение уровня на величину, большую или равную П, получило название перерыва. При передаче данных согласно рекомендациям ЕАСС перерывом считают П= 17,4 дБ. Перерывы делят на кратковременные и длительные

Для коммутируемых каналов ТЧ существует следующая нор­ма: t КР.ПЕР ЗОО мс. Это время выбрано из принятых в аппаратуре телефонной коммутации схемных решений, которые в случае перерыва длительностью более 300 мс обеспечивают разъединение ранее установленного соединения, т. е. приводят к отказу связи. Указанная величина рекомендуется МСЭ в качестве критерия отказа для передачи по коммутируемым каналам ТЧ. Рекомендуемая доля кратковременных перерывов на одном переприемном участке не должна превышать 1,5*10-5 за 90% часовых отрезков времени.

Плавные изменения уровня до некоторой степени характеризуются величиной стабильности остаточного затухания. Согласно рекомендациям МСЭ остаточное затухание для двухпроводного канала ТЧ должно составлять 7,0, для четырёхпроводного - 17,4 дБ, а его нестабильность во времени на одном участке переприёма - не превышать 1,75 дБ.

В каналах связи возникают также своеобразные мультипликативные помехи, связанные с нестабильностью генераторов поднесущих частот аппаратуры передачи. В результате затрудняется выделение на приёме когерентного колебания при ФМ или возникают искажения сигнала ЧМ. По существующим нормам расхождение поднесущих частот на участке переприёма ограничивается величиной 1 Гц. Кроме того, наряду со скачкообразными изменениями уровня сигнала в каналах связи имеют место скачки фазы, однако последние пока не нормированы.

25.Принципы построения СП (систем передачи) с временным разделением каналов (ВРК). Основные этапы преобразования аналоговых сигналов в цифровые (дискретизация по времени, квантование по уровню, кодирование).

В системах передачи с ВРК используются цифровые сигналы, представляющие собой ту или иную импульсную кодовую последовательность, т.е. это система для передачи цифровых данных. Напомним, что для преобразования аналогового сигнала в цифровой используются операции ДИСКРЕТИЗАЦИЯ, КВАНТОВАНИЕ, КОДИРОВАНИЕ. Дискретизация осуществляется на основе теоремы Котельникова. Для сигналов ТЧ с полосой 0,3 – 3,4 кГц + 0,9 кГц (защитный интервал), т.е. fв = 4 кГц. Тактовая частота дискретизации fт = 2fв = 8 кГц. Каждый отсчёт передаётся 8 битами, значит сигнал ТЧ можно передавать со скоростью fт × 8 бит = 8×103 ×8 = 64 кбит/с. Это и есть скорость передачи одного канала ТЧ. Отсчёты передаются в виде восьмиразрядных двоичных чисел, получаемых при квантовании отсчётов. Т.к. квантование имеет конечное число уровней, да ещё ограничения по max и min, то очевидно, что квантованный сигнал не является точным. Разница между истинным значением отсчёта и его квантованным значением – это шум квантования. Значение шума квантования зависит от количества уровней квантования, скорости изменения сигнала и от спосрба выбора шага квантования.

Линия связи - наиболее дорогостоящий элемент системы свя­зи. Поэтому целесообразно по ней вести многоканальную передачу информации, так как с ростом числа каналов N увеличивается ее пропускная способность С. Поичем. должно выполняться условие:

Н К - производительность к-го канала.

Основная проблема многоканальной передачи - разделение ка­нальных сигналов на приемной стороне. Сформулируем условия этого разделения.

Пусть необходимо организовать одновременную передачу несколь­ких сообщений по общему (групповому) каналу, каждое из которых описывается выражением

(7.1.1)



С учетом формулы (7.1.1.) получаем:

Иначе говоря, приемник обладает избирательными свойствами по от­ношению к сигналу Sk(t).

Рассматривая вопрос разделения сигналов различают частотное, фазовое, вре­менное разделение каналов, а также разделение сигналов по форме и другим признакам.

Второй учебный вопрос

Частотное разделение каналов

Структурная схема многоканальной системы связи (МКС) с час­тотным разделением каналов (ЧРК) приведена на рис.7.1.1, где обо­значено: ИС - источник сигнала, Мi - модулятор, Фi - фильтр i-го канала, Σ - сумматор сигналов, ГН - генератор несущей, ПРД- пе­редатчик, ЛС - линия связи, ИП - источник помех, ПРМ - прием­ник, Д - детектор, ПС - получатель сообщения.


Рис.7.1.1. Структурная схема многоканальной системы связи

При ЧРК сигналы-переносчики имеют различные частоты fi (поднесущие) и разнесены на интервал, больший или равный ширине спектра модулированного канального сигнала. Поэтому модулирован­ные канальные сигналы занимают неперекрывающиеся полосы час­тот и являются ортогональными между собой. Последние суммируют­ся (уплотняются по частоте) в блоке Σ образуя групповой сигнал, которым модулируется колебание основной несущей частоты fн в блоке М.

Для модуляции канальных переносчиков можно применять все известные способы. Но более экономично полоса частот линии связи используется при однополосной модуляции (ОБП AM), так как в этом случае ширина спектра модулированного сигнала минимальна и равна ширине спектра передаваемого сообщения. Во второй ступени моду­ляции (групповым сигналом) чаще также используется ОБП AM в проводных каналах связи.

Такой сигнал с двойной модуляцией, после усиления в блоке ПРД передается по линии связи в приемник ПРМ, где подвергается обратному процессу преобразования, т. е. демодуля­ции сигнала по несущей в блоке Д для получения группового сигнала, выделения из него канальных сигналов полосовыми фильтрами Фi и демодуляции последних в блоках Дi. Центральные частоты полосовых фильтров Фi равны частотам канальных переносчиков, а их полосы прозрачности - ширине спектра модулированных сигналов. Откло­нение реальных характеристик полосовых фильтров от идеальных не должно влиять на качество разделения сигналов, поэтому используют защитные интервалы частот между каналами. Каждый из фильтров Ф приема должен пропускать без ослабления лишь те частоты, которые принадлежат сигналу данного канала. Частоты сигналов всех других каналов фильтр должен подавить.


Частотное разделение сигналов идеальными полосовыми фильтра­ми математически можно представить так:

где g k - импульсная реакция идеального полосового фильтра, пропускаю­щего без искажений полосу частот к-го канала.

Основные достоинства ЧРК : простота технической реализации, высокая помехоустойчивость, возможность организации любого числа каналов. Недостатки: неизбежное расширение используемой полосы частот при увеличении числа каналов, относительно низкая эффек­тивность использования полосы частот линии связи из-за потерь на расфильтровку; громоздкость и высокая стоимость аппаратуры, обу­словленные в основном большим числом фильтров (стоимость фильт­ров достигает 40 % стоимости системы с ЧРК). На железнодорожном транспорте разработана МКС с ЧРК типа К-24Т, в которой исполь­зуются малогабаритные электромеханические фильтры.

Третий учебный вопрос

Для разделения сигналов могут использоваться не только частота (ЧРК) и время (ВРК), но и форма сигналов. Разделение каналов по форме пока не нашло такого широкого использования, как частотное и временное. Его настоящее применение и перспективы в наибольшей степени связаны с множественным доступом в мобильных и спутниковых системах. В мобильной связи кодовое разделение рассматривается как один из основных видов обеспечения множественного доступа в плане реализации концепции развития систем мобильной связи IМТ-2000.

Технология разделения каналов по форме предполагает возможность одновременной работы группы разнообразных радиосредств (мобильные терминалы, отдельные радиостанции, земные станции спутниковой связи и т. д.) в общей полосе частот . Сигналы радиосредств образуют суммарный (групповой) сигнал , который поступает на приемные устройства пользователей. Взаимная ортогональность сигналов обеспечивает корреляционному приемнику выделение необходимого сигнала из .

Асинхронно-адресные системы связи

В ряде случаев осуществить точную синхронизацию затруднительно. С этим приходится сталкиваться, например, при организации оперативной связи между подвижными объектами (автомобилями, самолетами) или при организации оперативной связи с использованием искусственных спутников Земли в качестве ретрансляторов. В этих случаях могут быть использованы системы асинхронной многоканальной связи, когда сигналы всех абонентов передаются в общей полосе частот, а каналы не синхронизированы между собой во времени. В системах со свободным доступом каждому каналу (абоненту) присваивается определенная форма сигнала, которая и является отличительным признаком, "адресом" данного абонента, отсюда и название асинхронно адресные системы связи (ААСС).

Адрес абонента может кодироваться в виде псевдослучайных (шумоподобных) сигналов или в виде последовательности нескольких радиоимпульсов с одинаковым или различным частотным заполнением. Если радоимпульсы имеют различное частотное заполнение, то говорят, что адрес кодируется в виде частотно-временной матрицы (ЧВМ). Адреса различаются как интервалами времени между радиоимпульсами, так и частотами их заполнения.

Рассмотрим принцип работы ААСС на основе обобщенной структурной схемы (рис. 8.15).

Передаваемые сообщения, полученные от источников , подвергаются импульсной модуляции. В одних системах используется ФИМ, в других - некоторые разновидности дельта-модуляции. Затем каждый импульс, полученный в результате первичной импульсной модуляции, преобразуется в адресную последовательность из импульсов, разделенных паузами .

Формирование адресных последовательностей осуществляется с помощью линии задержки (ЛЗ), имеющую отводов, как показано на рис. 8.15.

Для формирования адреса используется только отводов из , причем для другого адреса применяется другое сочетание отводов. Эти импульсов различаются частотой своего заполнения (всего таких частот в системе уплотнения ) и могут занимать различных положений во времени. Для примера, на рис. 8.16 представлен вариант построения таких адресных последовательностей для системы с и .

Таким образом, импульс, полученный в результате первичной импульсной модуляции сообщением, разделяется в линии задержки на импульсов. Каждый из этих импульсов может занимать одно из положений во времени и передается на своей частоте.

Варьируя положения импульсов во времени относительно первого импульса, а также частоты заполнения импульсов, можно получить большое число адресных кодовых комбинаций (большую кратность уплотнения).

Каждый индивидуальный приемник представляет собой нелинейное устройство, содержащее линии задержки и схему совпадения (СС), и реагирует только на определенную последовательность радиоимпульсов (рис. 8.17). Приемник имеет полосовых фильтров , настроенных на соответствующие частоты. Выходные импульсы каждого фильтра детектируются и поступают на линии задержки, спроектированные в соответствии с присвоенным данному приемнику адресом так, чтобы все импульсов на выходах совпали по времени. На нелинейной схеме совпадений (СС) появляется импульс только при том условии, что задержанные входные импульсы во всех ветвях совпали. Если же с выходов линий задержек на вход схемы совпадения хотя бы один из импульсов поступает неодновременно с остальными, то сигнал на выходе СС не появится. Благодаря этому приемник реагирует лишь на присвоенную ему адресную кодовую комбинацию.

Описанный процесс разделения сообщений (т.е. выделения только присвоенной приемнику адресной кодовой комбинации) поясняет рис. 8.17. На вход приемника поступает групповой сигнал, содержащий, в частности, два сообщения (заштрихованные и незаштрихованные радиоимпульсы). Приемное устройство реагирует лишь на присвоенную ему адресную частотно-временную комбинацию, отображенную заштрихованными импульсами, т.е. выделяет сообщение. Импульсы с выхода схемы совпадения преобразуются в принятое сообщение в импульсном демодуляторе (ИД) в соответствии с примененной импульсной модуляцией.

Для того чтобы установить связь с определенным абонентом, достаточно выбрать соответствующие положений индивидуальной линии задержки на передатчике согласно адресной кодовой комбинации. Никаких частотных перестроек в этих системах не требуется, что очень удешевляет аппаратуру и обеспечивает ее надежность.



Статьи по теме: