0 4 квт сколько вольт расшифровка. Что такое кВА, кВт, кВАр, Cos(ф)? Самонесущие изолированные провода: надежность, качество и безопасность

МВАр (Мегавольт Ампер-реактивный)
Не буду вдаваться в теорию, расскажу упрощенно и для сведения. На самом деле все генераторы на электростанциях вырабатывают два вида мощности. Во-первых, Активную мощность (это те самые Мегаватты - МВт, про которые я рассказал выше). Активная мощность совершает всю полезную работу - по нагреву проводников, по вращению двигателей. Но есть еще и реактивная мощность. Без нее не смогут крутиться двигатели (только активной мощности для приведения во вращение двигателя недостаточно) и работать некоторые потребители. Просто знайте, что она есть. Отсюда вытекает понятие полной мощности - измеряется в Мегавольт Амперах (МВА) - это корень квадратный из суммы квадратов активной и реактивной мощностей. Кстати, косинус фи (может слышали такое понятие, относящиеся к энергетике, показывает соотношение активной и реактивной мощностей, которые берет из сети потребитель). Все, идем дальше.

кВ (киловольт)
В Вольтах измеряется электрическое напряжение, обозначается «U». Если подумать - мы постоянно сталкиваемся с этой физической величиной. Электрическое напряжение между «+»-ом и «-»-ом пальчиковой батарейки от пульта телевизора всего 1,5 В, «в розетке на стене», то есть между ее контактами 220 В. Чаще всего напряжение используется журналистами при упоминании в материале линий электропередачи и электрических подстанций. Хочу открыть маленький секрет - если речь идет об отключении линии, зная ее напряжение можно оценить примерный масштаб отключений. Итак, в нашей стране используются следующие классы напряжений (про специфические, которые используются на некотором оборудовании промышленных предприятий писать не буду):
220 Вольт (220 В) - на такое напряжение рассчитаны бытовые приборы в СССР и соответственно проводка в жилых и административных зданиях.
0,4 кВ (0,4 киловольта или 400 Вольт, на самом деле 380 Вольт, для удобства округленные до целого значения) - линии такого напряжения прокладывают на очень маленькие расстояния, обычно от «трансформаторной будки» во дворе дома, до подъезда или по сельской улице, в любом случае максимальная длина такой линии - десятки метров. Соответственно если такая линия отключится, об этом узнают не более сотни потребителей электроэнергии.
6 кВ (6 киловольт или 6 тысяч Вольт, 6 000 В), 10 кВ, 35 кВ - это класс напряжения распределительной внутригородской сети, отключение сразу нескольких таких линий может «погасить» максимум небольшой городской квартал, как правило, длина таких линий несколько километров.
110 кВ, 220 кВ - системообразующая региональная сеть, длина от десятков до сотен километров. Отключение такой линии может оставить без света от 100 000 до 200 000 человек. Правда, обычно такие линии работают по несколько в параллели, так, что для того, чтобы пропал свет должно отключиться сразу нескольких линий или вся подстанция целиком.
500 кВ - сеть, образующая Единую Электроэнергетическую Систему Казахстана, также линии такого класса напряжения образуют межгосударственные электрические связи. Отключение такой линии может привести к обесточиванию до полумиллиона потребителей (а если отключение получит развитие, без света останется намного больше людей). Однако, как правило, ничего страшного не происходит, поскольку в параллели несколько таких линий. Длина несколько сотен километров. Самая длинная линия 500 кВ в Казахстане - от Актюбинска до Костаная - 500 км. Первые линии напряжением 500 кВ появились в СССР после 1960 года. В Казахстане первая 500-ка это линия между г. Аксу (Ермак) и Экибастузом, построенная в 1972 году.
1150 кВ (1 миллион 150 тысяч Вольт) - линия (вернее транзит длиной 2500 км, из которых 1500 км проходит по нашей территории) уникальна для Земли. Ни в одной стране мира нет линий такого класса напряжения. Только в Казахстане и России. Линия была построена для обмена мощностью между Сибирью, Казахстаном и Европейской частью СССР. Транзит берет начало в сибирском Итате, затем идет через Барнаул, Экибастуз, Кокшетау, Костанай в Челябинск. Для чего такие «дикие» напряжения, спросите вы? Просто это дает возможность передавать по транзиту 5 500 МВт - это самая мощная ВЛ в мире. Правда, на своем «родном» напряжении линии удалось поработать недолго. Распался Советский Союз, произошел резкий спад потребления - передавать стало нечего. Вот и перевели ее на напряжение 500 кВ. Но кто знает, может все вернется обратно?

Был один случай. Приехал к нам в Казахстан один иностранец, по линии какой-то международной организации, то ли ООН, то ли USAID, не помню. Приехал обучать аборигенов, так сказать. Достижениям западной цивилизации. Долго парил мозги про «их» успехи (которые, по правде говоря, для нас стали пройденным этапом году эдак в 1970), и по концовке видимо решил нас окончательно добить своим превосходством. У нас, говорит (многозначительно так), системообразующая сеть работает на напряжении… целых 400 тысяч Вольт! Последовавший за этим наш дружный смех он интерпретировал неправильно, подумал, что по причине сильной отсталости, туземцы не верят в существование такой «огромной» цифры, и уже было начал обдумывать продолжение спича. Однако был нами остановлен, и под белы ручки подведен к карте с трассировкой линий по стране. Док долго отказывался верить в то, что у нас буквально весь Казахстан в линиях на 500 кВ, а что построена линия напряжением 1150 кВ он поверил только у себя на родине, когда ознакомился с разведданными ЦРУ:) Больше к нам спецов не присылали.

Я перечислил все классы напряжения, которые используются в Казахстане и странах бывшего СССР (правда в России, Белоруссии, Прибалтике и на Украине используются еще классы 330 кВ и 750 кВ). В странах дальнего зарубежья классы напряжения отличаются от вышеприведенной шкалы. И это не от большого ума. Например, в США напряжение, используемое бытовыми приборами не 220 В, как у нас, а 127 В. На что это влияет? Если кто помнит, электрические «шнуры» (кабели питания) советской бытовой техники были довольно тонкими. Не то, что сейчас - телевизор, мощностью с лампочку в подъезде, получает питание от сети по кабелю, толщиной чуть ли не с мизинец, а про стиральную машинку я вообще молчу. Кстати, мой советский телевизор «Радуга» потреблял 750 Вт - в 3 раза больше, чем телек 51-ой диагонали LG сегодня. Далекие от школьных уроков физики люди думают, что такая разница в толщине проводов из-за желания иностранных производителей сделать более надежную и безопасную технику. А вот и нет. Просто кабели выпускаются под западные 110 -127В, а при таком напряжении меди в проводе должно быть в 4 (!) раза больше, чем при «советском» напряжении 220 В (для питания бытового прибора той же мощности). Чтобы оценить весь ужас перерасхода цветных металлов в США, помимо неэффективных «шнуров» к бытовой технике нужно учесть такую же проводку в стенах зданий, рассчитанную на 110-127 В. Скажете, что это они, дураки, что ли? Взяли бы да поменяли на 220 В. Не все так просто. Они бы сейчас может и поменяли, да денег это стоит переделывать все по новой стольких, что они запарятся доллары печатать.

Напряжение - локальный фактор. Если у вас слишком низкое напряжение в квартире, значит, проблема скорее всего существует в совсем небольшом районе. Скорее всего, на местной подстанции неправильно отрегулированы трансформаторы, либо в вашем районе дефицит реактивной мощности, про которую я написал ниже. Локальный - это означает, что если есть проблемы с напряжением в одном из Алматинских дворов, в соседнем может быть все в порядке, тем более все в порядке с напряжением в другом городе.

Постоянный и переменный электрический ток
Несмотря на то, что журналисты почти не сталкиваются с понятием электрического тока, для общего развития вкратце напишу и про него. Электрический ток это направленное движение электрически заряженных частиц под воздействием электрического поля. Уфф…:) Заряженными частицами могут быть, например электроны в металлических проводниках (поэтому провода ЛЭП делают из металла). Ионы в электролитах (поэтому «человека может ударить током»). Проще всего объяснить, что такое ток на устройстве простейшей электрической цепи. Есть источник тока - батарейка. Есть лампочка, подключенная к «+» и «-» батарейки при помощи проводника, например медной проволоки. Это простейшая электрическая цепь.

Батарейка является химическим источником тока. Из-за химических реакций, протекающих в батарейке, на стороне «-» батарейки, накапливаются электроны. Далее. Медная проволока, состоит из атомов, образующих кристаллическую решетку. Сквозь эту решетку могут свободно проходить электроны. Как только цепь замыкается (лампочка через проводки соединяется с обоими концами батарейки), электроны от «-» батарейки начинают перетекать к «+» по проволоке и нити накаливания лампочки (благодаря электродвижущей силе, которую создает батарейка) - это и есть электрический ток. Нить лампочки накаливания тоже металлическая, но кристаллическая решетка металла, из которого она изготовлена (обычно Вольфрам) намного «меньше» чем кристаллическая решетка меди, из которой сделаны проводки. Электронам труднее «протиснуться» через нее, в результате «трения» нить накаливания разогревается до высокой температуры и начинает светиться. Здесь мы коснулись еще одного понятия - электрического сопротивления. У меди оно меньше, чем у Вольфрама. Итак, здесь все понятно. Электроны циркулируют по цепи - это электрический ток, причем постоянный, поскольку они циркулируют в одном и том же направлении.

На постоянном токе «работает» практически вся бытовая электроника (компьютеры, телевизоры, пульты дистанционного управления). Исторически электрификация (централизованное обеспечение электроэнергией) начиналась с постоянного тока. Вообще, электрификация была голубой мечтой дедушки Томаса Эдисона, которую он, кстати, воплотил в жизнь. «Никогда не изобретай то, чего не сможешь продать!» - любил повторять предприимчивый изобретатель. Действительно, в те времена организация искусственного освещения сулила огромные барыши (в наше время это тоже отличный бизнес). Интересно, что до распространения искусственного освещения люди спали в среднем 10 часов в сутки. Основатель «General Electric », Эдисон стал одним из отцов современной энергетики, он спроектировал и выполнил в натуре первую в мире законченную энергетическую инфраструктуру - и производство электроэнергии на генераторах постоянного тока и ее доставку по линиям электропередачи к потребителям и всякие «мелочи» вроде выключателей, патронов к лампочкам, счетчиков электроэнергии и т.д. Кстати, размер цоколя лампочки до сих пор принято обозначать с большой латинской «E». Например, Е27 или Е14, где «Е» - означает Edison, а цифра это диаметр цоколя в миллиметрах. Сама лампочка накаливания - коллективное творение. Во всяком случае, Эдисон в 1906 году купил у Лодыгина патент на вариант лампочки с вольфрамовой нитью накаливания. Первым электрифицированным районом Земли стал Манхеттен в Нью-Йорке.

Все у Эдисона было нормально, пока не обнаружилась одна проблемка. Рабочее напряжение Эдисоновской сети постоянного тока было 127 Вольт - такое напряжение давали генераторы. Но чем дальше от генераторов пытались передать электроэнергию, тем меньше ее передавалось - сильно снижалось напряжение (это происходило из-за наличия сопротивления в электрических кабелях). Выход из положения состоял либо в том, чтобы повысить напряжение, но это создавало угрозу поражения электрическим током для конечных потребителей, а самое главное (самое - потому, что не до людей, когда такие деньги) нужно было менять генераторы, но это дорого, либо второй вариант - «понатыкать» электростанций по всему Нью-Йорку (через каждые 1,5-2 км), что, вообще говоря, снижало экономическую эффективность всей системы, про экологию я вообще молчу. Поскольку компания Эдисона была монополистом, он склонялся ко второму варианту.

Но тут Никола Тесла, который работал у Эдисона, подбросил идею перехода на переменный ток. В чем суть идеи. В 1831 году Майкл Фарадей обнаружил, что если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии магнитного поля, то в проводнике возникнет электрический ток. Блин, если так и дальше пойдет скоро и сам начну понимать, о чем пишу:) Проще говоря, что сделал Фарадей, - взял катушку, намотал на нее провод, концы провода подсоединил к вольтметру и как Ослик Иа из мультика про Винни Пуха стал опускать в полую сердцевину катушки магнит на ниточке, а потом поднимать. «Замечательно входит, замечательно выходит», - думал Фарадей. Тут смотрит, а стрелка вольтметра с каждым таким движением и дергается. Так и открыл электромагнитную индукцию.

Так вот, мо мере опускания магнита, по проводу, намотанному на катушку, начинает течь и возрастать ток, затем он уменьшается, затем становится равным нулю, а потом все повторяется в обратном направлении, а затем снова и снова. Это и есть переменный ток. Только до Теслы, куда его присобачить, этот переменный ток, никто не знал. Ну, есть, мол, такой и все тут.

Да, и еще изобрели трансформатор.

На Фарадейевскую катушку надели еще одну, большего диаметра (электрическая матрешка получилась), и тут заметили, что во второй катушке (если число витков отлично от первой катушки), напряжение другим становится. Так вот, Тесла прикинул 2+2 и предложил использовать переменный ток следующим образом. Делаем генератор переменного тока. Затем пропускаем переменный ток через трансформатор и многократно увеличиваем напряжение (это позволит передавать электроэнергию на большие расстояния). Затем доставляем электроэнергию до потребителя по линии электропередачи и снова пропускаем ток через трансформатор, только уже для понижения напряжения. Надо сказать, что такой фокус с постоянным током не проходит. Постоянный ток не трансформируется. Короче, вот проблема и решена, тем более что лампочке, если честно, вообще до лампочки - постоянный или переменный ток через нее проходит, светит почти одинаково. «Так, так, так, - захлопнув крышку карманных часов, сказал Эдисон, не дав Тесле договорить до конца. - А где генератор переменного тока взять, ты, что ли его изобретать будешь?». «Да я и не такое изобрести смогу, самодовольный ты осел », - ответил Никола. «Послушай, чем заниматься ерундой, приложи-ка лучше усилия к решению проблем электрических машин постоянного тока, если получится, дам тебе … $50 000, - прищурив глаза, Эдисон протянул Тесле исписанный листок бумаги. - И ступай уже, работать мешаешь». В подтверждение окончания разговора Эдисон отвернулся к верстаку, с какими-то железками, которым вскоре предстояло стать первым в мире видеовоспроизводящим устройством - кинетоскопом. Тесла довольно быстро решил проблемы с машинами Эдисона, и так же быстро придумал принцип работы генератора переменного тока. Помните Ослика Иа Фарадея с катушкой? Теперь немного изменим опыт. Не будем привязывать магнит за ниточку. Вместо этого, насадим магнит на палочку (тфу ты, детский сад какой-то) и будем палочку крутить, вдоль свой оси. Пишу, а самого почему-то смех разбирает:)) Катушка начнет вырабатывать переменный ток. В промышленном образце, конечно, никакого магнитика с палочкой нет, там есть ротор с мощным электромагнитом, который приводится во вращение паровой турбиной, вместо катушки с проволокой - статор. Итак, Тесла решил все задачи по машинам постоянного тока, которые Эдисон не смог решить сам. А Эдисон денег не дал. «Ну, ты парень даешь, совсем наших американских шуток не понимаешь, какие такие 50 штук баксов, я ж тебе зарплату плачу!» - ехидно улыбаясь, Эдисон похлопал Теслу по плечу и, приложив некоторое усилие, вырвал из рук своего сотрудника папку с чертежами и расчетами. «Нет, все-таки я великий изобретатель», - подумал Эдисон, наблюдая как сутуловатая фигура худощавого Теслы удаляется по коридору. Вот как Тесла и Эдисон рассорились. Да так, что через много лет, когда Тесле присудили Нобелевскую, он от нее отказался, поскольку ее на двоих с Эдисоном давали.

Почему Эдисон пробросил Теслу - понятно. Чтобы на переменный ток переходить, надо, во-первых, признать, и рассказать инвесторам, что я, Томас Алва Эдисон, в свое время недошурупил, что перспектив у постоянного тока как у снежка в микроволновке, а во-вторых, надо растрясти этих инвесторов на новые вложения. Не так-то это и просто. А что Тесла? А Тесла взял и пошел к Джорджу Вестингаузу, конкуренту Эдисона. Рассказал ему все как есть и сделали они первую в мире ГЭС с генераторами переменного тока на Ниагарском водопаде. Кстати, наш «КaзАтoмПрoм» владеет 10% акций компании «Westinghouse Electric », скажи в те годы Джорджу Вестингаузу, что казахи будут совладельцами его компании, думаю он бы сильно удивился, вот что глобализация делает.

Надо сказать, что Эдисон тоже не сдавался, какое то время. Что он только не делал, чтобы насолить развеселой компании Коли и Жоры. Статьи заказные писал с кричащими заголовками вроде «Еще одна жертва переменного тока» или «Все, что вы хотели узнать о переменном токе - убийце, но боялись спросить». И стул изобрел «электрический» (конечно же, на переменном токе), дескать, видите, мы этим переменным током преступников на тот свет отправляем, а вы хотите, чтобы он у вас из розетки дома торчал. И через «своих» сенаторов закон провел об ограничении уровня напряжения на линиях электропередачи, что делало бессмысленным использование переменного тока (потом закон конечно отменили). При этом опасность поражения постоянным током при напряжении 127 В ничуть не меньше, чем переменным. Это противостояние назвали «войной токов ». Но. Развитие не остановишь, переменный ток взял свое. Других вариантов нет и сегодня. Правда, надо сказать, американцы странные люди - на одной полке с прогрессом у них и технологическая отсталость может лежать. При всех преимуществах переменного тока, последние эдисоновские сети постоянного тока в Нью-Йорке были демонтированы только в 2007 году. Как говорится, дедушка умер, а дело живет, лучше бы было наоборот.

Любое помещение в квартире следует использовать максимально эффективно. Не является исключением и малогабаритная ванная комната. В процессе ее обустройства необходимо подобрать цветовое и стилистическое оформление, определиться с типом отделки, особенностями сантехнических приборов и мебели.

Правила отделки

Планировка ванной 4 кв. м. не оставляет чрезмерно большого разнообразия вариантов отделки интерьера. Однако возможности обустроить уютное и комфортное помещение существуют, и их не так уж и мало.


При этом целесообразно ориентироваться на такие нюансы:

  • ориентироваться в отделке надо на светлые оттенки;
  • система освещения должна быть многоуровневой;
  • наличие зеркал помогает визуально расширить помещение;
  • конструкции из стекла должны быть прозрачными;
  • в меблировке следует руководствоваться принципами минимализма.

Подбор цвета

Занимаясь оформлением интерьера, можно выбрать дизайн ванной комнаты 4 кв. м. с использованием достаточно широкой цветовой палитры. Однако предпочтительными все же будут светлые тона.

Интерьер выиграет и в том случае, если вы остановитесь на бежевых и кремовых вариациях, наделяющих ванную теплом и уютом. Чтобы разнообразить светлое оформление, можно использовать не слишком яркие вертикальные декоративные узоры.

Целесообразно обращать внимание и на цветовые сочетания. Например, комфорт подарят сиреневый цвет с оттенком фиалки, а также розовый и светло-зеленые тона. Хорошо будет смотреться сочетание цвета какао и лимона.

Шоколадный оттенок прекрасно сочетается с белым, желтым или синим цветом, а ванную комнату в чисто белых тонах можно сделать более оригинальной при помощи розовой, синей и зеленой палитры.

Выбрав наиболее подходящий цвет, целесообразно исключить крупные панно и орнаменты, поскольку они будут визуально «съедать» пространство. А вот оформление мозаикой поможет зонировать и расширить комнату в зрительном восприятии.


Особенности отделки ванной

Выбор материалов для отделки помещения определяется достаточно экстремальными условиями в нем – это и высокая влажность, и повышенные температуры.

Поэтому они должны быть прочными, влагостойкими, устойчивыми к температурным перепадам, легко очищаться и не подвергаться воздействию грибков и плесени. Одновременно в этих целях необходимо оборудовать эффективную систему вентиляции.

Стены

Наиболее популярным материалом для отделки стен является керамическая плитка. Это объясняется ее свойствами – низким показателем влагопоглощения, прочностью, гигиеничностью.

Современные ванные комнаты 4 кв. м. могут отделываться традиционным сочетанием – снизу кафель темного цвета, а сверху – более светлого. Разделение цветов производится бордюром или фризом.


Оттенки можно также поменять местами или же сделать вертикальное разделение разноцветных кафельных полос при помощи бордюра.

Износостойкий и долговечный англомерат позволяет украсить малогабаритную ванную. Это оригинальное покрытие может быть выполнено в самых разнообразных цветах, иметь вкрапления мозаики с авантюрином.

А вот пластиковые панели в большей степени подходят бюджетному типу отделки, хотя и позволяют выбрать любое цветовое оформление. Здесь важно не перестараться и выбирать только сдержанные тона и принты, не уменьшающие помещение.

Еще одним способом сэкономить на интерьере будет окрашивание влагостойкой краской. Однако необходимо предварительно выровнять стены и правильно подобрать оттенок.

В противовес окрашиванию отделка мрамором придает эффект роскоши и изыска, что ярко демонстрируется на фото ванной 4 кв. м. Дополнительно можно использовать декорирование мраморными вкраплениями.

Пол

Вследствие постоянного контакта с водой, необходимо выбирать влаго- и водостойкие покрытия, которые исключают водопоглощение и разбухание.

Поэтому традиционная облицовка кафелем остается в моде. Правда следует ориентироваться на более оригинальные решения, например, выкладывать крупные плитки светлых тонов в форме ромба или использовать шестигранники плитки-пэчворк. Хорошо будет смотреться кафель под камень. Такое покрытие надежное и не боится даже моющих средств.

Подчеркнуть роскошь можно при помощи укладки натурального камня, но стоимость будет достаточно дорогой, да и не со всеми стилями такое решение сочетается. Поэтому целесообразно делать наливные полы с использованием эпоксидных смол.

Покрытие легко укладывается и после высыхания дает прочную основу, которую можно украсить самыми разными способами, например 3Д рисунками на морскую или природную тематику.

Ну а если вы хотите подчеркнуть оригинальность своей идеи ванной комнаты 4 кв. м. изделиями из древесины – ламинатом или деревянным полом, то следует приобретать только качественный водостойкий материал.

Потолок

Среди лидеров остаются натяжные потолки, которые отличаются прочностью и влагостойкостью. Но следует выбирать пленки с глянцевым эффектом, что позволит поднять потолок. Единственным недостатком будет возможность провисания конструкции.


Также можно выбрать более бюджетный вариант – простое окрашивание. Но этот вариант менее долговечен и более требователен в уходе. Оригинальность интерьера создается и ПВХ панелями с зеркальной поверхностью.

Мебель и сантехника

При установке сантехнических приборов основным критерием является их компактность. Если вы хотите установить ванну, то желательно брать традиционную конструкцию прямоугольной формы с монтажом пластиковой перегородки. Подойдет также овальная, полукруглая или асимметричная конструкция.

А вот квадратных и круглых чаш следует избегать. Сэкономить пространство вам поможет замена ванны душевым боксом или обычной кабинкой.

Ванная с туалетом 4 кв. м. требует выбора правильного места не только для умывальника, но и для унитаза. Здесь вам помогут навесные и треугольные конструкции, существенно экономящие пространство.

Угловое размещение раковины поможет более эффективно использовать свободные и труднодоступные зоны в помещении. Неплохим решением будет установка раковины, вмонтированной в тумбу, или же монтаж стиральной машинки под умывальником.

Мебель не должна сжимать пространство. Поэтому выбирать следует конструкции открытого типа. В качестве материала подойдет металл или стекло. Помогут вам и навесные шкафчики, а над дверью можно оборудовать удобную и вместительную антресоль.

Особое внимание уделяется обустройству зеркальных поверхностей. Они необходимы для проведения гигиенических процедур, но и играют роль в визуальном планировании помещения.

Не стоит забывать и о важности системы освещения. Каждая отдельная функциональная зона должна быть подсвечена. Особенно это относится к угловым участкам, шкафчикам, зеркалам. Неплохо будет смотреться и пол с подсветкой. Главное – обеспечить хорошую освещенность в естественном для человеческого глаза спектре.

Малогабаритные помещения требуют особого внимания при обустройстве. Важно подобрать способы отделки, приборы, мебель и освещения таким образом, чтобы максимально эффективно и с выгодой для всех членов семьи использовать пространство.

Фото ванной комнаты 4 кв. м.

  • повышение безопасности при строительстве и эксплуатации;
  • применение конструкций, элементов и оборудования, обеспечивающих надежность, оптимальные затраты при строительстве, техническом перевооружении и обслуживании в течение срока службы;
  • создание необслуживаемых и компактных воздушных линий.

Требования к воздушным линиям 0,4 кВ:

ВЛ 0,4 кВ должна выполняться в трехфазном 4-проводном исполнении по радиальной схеме проводами одного сечения по всей длине линии (магистрали) от подстанций 10/0,4 кВ.

ВЛ 0,4 кВ выполняются только с использованием самонесущих изолированных проводов.

Протяженность линий должна ограничиваться техническими условиями по критерию качества напряжения, надежности электроснабжения потребителя и экономическими показателями (техническими потерями электроэнергии в линии и затратами на ее распределение).

На вводах к абонентам устанавливать устройства для ограничения потребляемой мощности (совместная работа с энергосбытовой организацией). Устройства ограничения мощности должны обеспечивать автоматическое отключение абонента от электрической сети в случае превышения мощности его электроустановок и обратное включение с выдержкой времени.

Самонесущие изолированные провода: надежность, качество и безопасность

Задачу поддержания технического состояния сетей на современном уровне невозможно решить без применения на ВЛ новых, более совершенных конструкций и технологий. Взамен традиционных конструктивных исполнений с неизолированными проводами, которые обладают высокой аварийностью, низкой надежностью получили линии с изолированными проводами (СИП).

Основу воздушной линии с изолированными проводами (ВЛИ) составляют изолированные фазные провода, скрученные в жгут вокруг изолированного или неизолированного нулевого несущего провода (СИП), при этом все механические воздействия на провода воспринимаются несущим проводом.


По сравнению с неизолированными проводами СИП имеют большие преимущества:

  • возможность совместной подвески на опорах с телефонными линиями;
  • возможность применения опор действующих типовых проектов и опор меньшей высоты (согласно ПУЭ подвеска СИП разрешена на высоте 4 м, а неизолированных проводов на высоте 6 м);
  • сокращение эксплуатационных расходов за счет исключения систематической расчистки трасс, замены поврежденных изоляторов, сокращения объемов аварийно-восстановительных работ;
  • высокая безопасность обслуживания, отсутствие риска поражения током при касании проводов, находящихся под напряжением;
  • практическая невозможность короткого замыкания между фазными проводами и нулевым проводом или на землю;
  • меньший вес и большая длительность налипания снега, повышенная надежность в зонах интенсивного гололедообразования, уменьшение не менее, чем на 30% гололедноветровых нагрузок на опоры;
  • снижение падения напряжения вследствие малого реактивного сопротивления (0,1 Ом/км по сравнению с 0,35 Ом/км для неизолированных проводов);
  • возможность прокладки по фасадам зданий;
  • исключение опасности возникновения пожаров в случае падения проводов на землю;
  • уменьшение безопасных расстояний до зданий и других инженерных сооружений;
  • возможность совместной подвески на одной опоре самонесущих изолированных проводов 0,4/10 кВ и самонесущего изолированного кабеля на напряжение 10-35 кВ;
  • использование этих проводов практически исключает хищения: как электроэнергии, так и самих проводов.

Реклоузеры

Реклоузеры - это высокотехнологичные аппараты, объединяющие в себе передовые технологии в области вакуумной коммутационной техники и микропроцессорной защиты распре делительных сетей. Данные аппараты обладают целым рядом специфических особенностей, которые позволяют применять их для решения самых разных задач.

По результатам проведения научно-технического совета, во II квартале 2007 года принято решение о применении реклоузеров для секционирования и автоматического управления переключениями в сетях 6-10 кВ.

С применением реклоузеров появилась возможность автоматизировать следующие сетевые сервисы:

  • оперативные переключения в распределительной сети
  • отключение поврежденного участка
  • повторное включение линии (тройное АПВ)
  • выделение поврежденного участка
  • восстановление питания на неповрежденных участках сети
  • сбор информации о параметрах режимов работы электрической сети

Говоря о мощности электроприборов, обычно подразумевается активная энергия. Но многие устройства потребляют также реактивную энергию. В этой статье рассказывается о том, что такое кВа, и в чём отличие кВа от кВт.

Активная и реактивная энергия

В сети переменного тока величина тока и напряжения меняется по синусоиде с частотой сети. Это можно увидеть на экране осциллографа. Все виды потребителей можно разделить на три категории:

  • Резисторы, или активные сопротивления, – потребляют только активный ток. Это лампы накаливания, электроплиты и подобные устройства. Основным отличием является совпадение по фазе тока и напряжения;
  • Дросселя, катушки индуктивности, трансформаторы и асинхронные электродвигатели – используют реактивную энергию и превращают её в магнитные поля и противоЭДС. В этих приборах ток отстаёт по фазе от напряжения на 90 градусов;
  • Конденсаторы – превращают напряжение в электрические поля. В сетях переменного тока используются в компенсаторах реактивной мощности или в качестве токоограничивающих сопротивлений. В таких аппаратах ток опережает напряжение на 90 градусов.

Важно! Конденсаторы и индуктивности сдвигают ток относительно напряжения в противоположные направления и при включении в одну сеть компенсируют друг друга.

Активной называют энергию, выделяющуюся на активном сопротивлении, таком, как лампа накаливания, электронагреватель и другие похожие электроприборы. В них фазы тока и напряжения совпадают, а вся энергия используется электроприбором. При этом исчезают различия между киловаттами и киловольт-амперами.

Кроме активной, есть реактивная энергия. Её используют устройства, в конструкции которых есть конденсаторы или катушки с индуктивным сопротивлением электродвигатели, трансформаторы или дросселя. Им также обладают кабеля большой длины, но разница с прибором, обладающим чисто активным сопротивлением, невелика и учитывается только при проектировании линий электропередач большой длины или в высокочастотных устройствах.

Полная мощность

В реальных условиях чисто активные, ёмкостные или индуктивные нагрузки встречаются очень редко. Обычно все электроприборы используют активную мощность (P) вместе с реактивной (Q). Это полная мощность, обозначающаяся “S”.

Для вычисления этих параметров используются следующие формулы, которые необходимо знать, чтобы при необходимости осуществить перевод кВа в кВт и обратно:

  • Активная – это полезная энергия, превращаемая в работу, выражается в Вт или кВт.

КВа перевести в кВт можно по формуле:

где “φ” – угол между током и напряжением.

В этих единицах измеряется полезная нагрузка электродвигателей и других устройств;

  • Ёмкостная или индуктивная:

Отображает потери энергии на электрические и магнитные поля. Единица измерения – кВар (киловольт-ампер реактивный);

  • Полная:
  1. U – напряжение сети,
  2. I – ток через устройство.

Представляет из себя общее потребление электроэнергии устройством и выражается в VA или kVA (киловольт-ампер). В этих единицах выражаются параметры трансформаторов, например, 1 кВа или 1000 кВа.

К сведению. Такие аппараты 6000/0,4 кВ и мощностью 1000 кВа являются одними из самых распространённых для питания электрооборудования предприятий и жилых микрорайонов.

КВар, кВа и кВт связаны между собой формулой, похожей на знаменитую теорему Пифагора (Пифагоровы штаны):

Важно! Следует учесть, что к трансформатору мощностью 10 кВа нельзя подключить электродвигатель 10 кВт, поскольку электроэнергия, потребляемая этим аппаратом с учётом cosφ, составит около 14 киловольт-ампер.

Приведение cosφ к 1

Реактивная энергия, используемая потребителями, создаёт лишнюю нагрузку на кабель и пусковую аппаратуру. Кроме того, за неё приходится платить, как и за активную, а в переносных генераторах отсутствие компенсации увеличивает расход топлива. Но её можно скомпенсировать путём использования специальных устройств.

Потребители, нуждающиеся в компенсации cosφ

Одним из основных потребителей реактивной энергии являются асинхронные электродвигатели, потребляющие до 40% всей электроэнергии. Cosφ этих устройств около 0,7-0,8 при номинальной нагрузке и падает до 0,2-0,4 в режиме холостого хода. Это связано с наличием в конструкции обмоток, создающих магнитное поле.

Ещё один тип устройств – трансформаторы, cosφ которых падает, а потребление реактивной энергии растёт в ненагруженных аппаратах.

Компенсирующие устройства

Для компенсации используются разные типы устройств:

  • Синхронные двигатели. При подаче в обмотку возбуждения напряжение выше номинального, они компенсируют индуктивную энергию. Это позволяет улучшить параметры сети без дополнительных расходов. При замене части асинхронных двигателей синхронными возможности компенсации возрастут, но это потребует дополнительных расходов на монтаж и эксплуатацию. Мощность таких электродвигателей достигает нескольких тысяч киловольт-ампер;
  • Синхронные компенсаторы. Это синхронные электродвигатели отличаются упрощённой конструкцией и мощностью до 100 киловольт-ампер, не предназначены для приведения в движение каких-либо механизмов и работают в режиме Х.Х. Их предназначение – компенсация реактивной энергии. Во время работы эти устройства используют 2-4% активной энергии от количества компенсируемой. Сам процесс автоматизируется с целью достижения значения cosφ максимально близкого к 1;
  • Конденсаторные батареи. Кроме электродвигателей, в качестве компенсаторов применяются конденсаторные батареи. Это группы конденсаторов, соединённые в “треугольник”. Ёмкость этих устройств может изменяться присоединением и отсоединением отдельных элементов. Достоинством таких приборов является простота и малое потребление активной мощности – 0,3-0,4% от компенсируемой. Недостаток – в невозможности плавной регулировки.

Так сколько же кВт в 1 кВа? На этот вопрос нельзя ответить однозначно. Это зависит от разных факторов, и, прежде всего, от cosφ. Для проведения расчётов и расшифровки результатов можно использовать онлайн-калькулятор.

Знание всех составляющих мощности, в чем разница между ними, и то, как перевести кВа в кВт, необходимо при проектировании электрических сетей.

Видео



Статьи по теме: