Презентация на тему "устройство и принцип работы генератора". Индукционный генератор Индукционный генератор электрического тока презентация

Ни для кого не станет удивительным тот факт, что в наши дни популярность, востребованность и спрос таких устройств, как электростанции и генераторы переменного тока, достаточно высоки. Это объясняется, прежде всего, тем, что современное генераторное оборудование имеет для нашего населения огромное значение. Помимо этого необходимо добавить и то, что генераторы переменного тока нашли свое широкое применение в самых различных сферах и областях. Промышленные генераторы могут быть установлены в таких местах, как поликлиники и детские сады, больницы и заведения общественного питания, морозильные склады и многие другие места, требующие непрерывной подачи электрического тока. Обратите свое внимание на то, что отсутствие электричества в больнице может привести непосредственно к гибели человека. Именно поэтому в подобных местах генераторы должны быть установлены обязательно. Также довольно распространенным является явление использования генераторов переменного тока и электростанций в местах проведения строительных работ. Это позволяет строителям использовать необходимое им оборудование даже на тех участках, где полностью отсутствует электрификация. Однако и этим дело не ограничилось. Электростанции и генераторные установки были усовершенствованы и дальше. В результате этого нам были предложены бытовые генераторы переменного тока, которые вполне удачно можно было устанавливать для электрификации коттеджей и загородных домов. Таким образом, мы можем сделать вывод о том, что современные генераторы переменного тока имеют довольно широкую область применения. Кроме того они способны решить большое количество важных проблем, связанных с некорректной работой электрической сети, либо ее отсутствием.

«Электрические цепи переменного тока» - Применение электрического резонанса. Векторная диаграмма напряжений в сети переменного тока. Закон Ома. Колебания силы тока. Электрические цепи переменного тока. Электрический резонанс. Диаграмма. Три вида сопротивлений. Векторная диаграмма. Диаграмма при наличии в цепи переменного тока только индуктивного сопротивления.

«Переменный ток» - Переменный ток. Генератор переменного тока. Переменным током называется электрический ток, изменяющийся во времени по модулю и направлению. Определение. ЭЗ 25.1 Получение переменного тока при вращении катушки в магнитном поле.

««Переменный ток» физика» - Сопротивление конденсатора. Конденсатор в цепи переменного тока. Колебания тока на конденсаторе. R,C,L в цепи переменного тока. Как ведет себя конденсатор в цепи переменного тока. Как ведет себя индуктивность. Проанализируем формулу индуктивного сопротивления. Использование частотных свойств конденсатора и катушки индуктивности.

«Сопротивление в цепи переменного тока» - Индуктивное сопротивление- величина, характеризующее сопротивление, оказываемое переменному току индуктивностью цепи. Емкостное сопротивление - величина, характеризующая сопротивление, оказываемое переменному току электрической емкостью. Одинаков ли цвет фигур? Активное сопротивление в цепи переменного тока.

«Переменный электрический ток» - Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Активное сопротивление. Im= Um / R. i=Im cos ?t. Свободные электромагнитные колебания в контуре быстро затухают и поэтому практически не используются. И наоборот, незатухающие вынужденные колебания имеют большое практическое значение.

«Трансформатор» - Если ответ «да», то к источнику какого тока нужно подключить катушку и почему? Написать конспект к параграфу 35 Физические процессы в трансформаторе. Задача2. Источник переменного тока. ЭДС индукции. K – коэффициент трансформации. Напишите формулу. Можно ли повышающий трансформатор сделать понижающим?

Класс: 11

Цели урока:

  • продолжить изучение темы переменный ток;
  • объяснить устройство и принцип действия трехэлектродной лампы, виды и типы генераторов переменного тока;
  • продолжить формирование естественнонаучных представлений по изучаемой теме;
  • создавать условия для формирования познавательного интереса, активности учащихся;
  • способствовать развитию конвергентного мышления;
  • формирование коммуникативного общения.

Оборудование: интерактивный комплекс SMART Board Notebook, на каждом столе лежит “Сборник по физике” Г.Н. Степановой.

Метод ведения урока : беседа с использованием интерактивного комплекса SMART Board Notebook.

План урока:

  1. Оргмомент
  2. Проверка знаний, их актуализация (методом фронтального опроса)
  3. Изучение нового материала (каркасом нового материала является презентация)
  4. Закрепление
  5. Рефлексия

Ход урока

Ламповый генератор

Выше было рассмотрено применение трехэлектродной лампы в электронном усилителе. Однако триоды широко применяют и в ламповых генераторах, которые служат для создания переменных токов различной частоты.

Простейшая схема лампового генератора приведена на рис. 192. Основными его элементами являются триод и колебательный контур. Для питания нити накала лампы используется батарея накала Бн. В цепь анода включена анодная батарея Бa и колебательный контур, состоящий из катушки индуктивности Lк и конденсатора Cк, Катушка Lc включена в цепь сетки и связана индуктивно с катушкой Lк колебательного контура. Если зарядить конденсатор, а затем замкнуть его на катушку индуктивности, то конденсатор будет периодически разряжаться и заряжаться, а в цепи колебательного контура возникнут затухающие электрические колебания тока и напряжения. Затухание колебаний вызвано потерями энергии в контуре. Для получения незатухающих колебаний переменного тока необходимо периодически с определенной частотой добавлять энергию в колебательный контур с помощью быстродействующего устройства. Таким устройством является триод. Если накалить катод лампы (см. рис. 192) и замкнуть анодную цепь, то в цепи анода появится электрический ток, который зарядит конденсатор Ск колебательного контура. Конденсатор, разряжаясь на катушку индуктивности Lк, вызовет в контуре затухающие колебания. Переменный ток, проходящий при этом через катушку Lк, индуктирует в катушке Lс переменное напряжение, воздействующее на сетку лампы и управляющее силой тока в цепи анода.

Когда на сетку лампы подается отрицательное напряжение, анодный ток в ней уменьшается. При положительном напряжении на сетке лампы в анодной цепи увеличивается ток. Если в этот момент на верхней пластине конденсатора Ск колебательного контура будет отрицательный заряд, то анодный ток (поток электронов) зарядит конденсатор и тем самым скомпенсирует потери энергии в контуре.

Процесс уменьшения и увеличения тока в анодной цепи лампы повторится во время каждого периода электрических колебаний в контуре.

Если при положительном напряжении на сетке лампы верхняя пластина конденсатора Ск заряжена положительным зарядом, то анодный ток (поток электронов) не увеличивает заряда конденсатора, а, наоборот, уменьшает его. При таком положении колебания в контуре не будут поддерживаться, а будут затухать. Чтобы этого не случилось, необходимо правильно включать концы катушек Lк и Lc и обеспечить этим своевременный заряд конденсатора. Если колебания в генераторе не возникают, то необходимо поменять местами концы одной из катушек.

Ламповый генератор является преобразователем энергии постоянного тока анодной батареи в энергию переменного тока, частота которого зависит от индуктивности катушки и емкости конденсатора, образующих колебательный контур. Нетрудно понять, что это преобразование в схеме генератора выполняет триод. Э. д. с., индуктируемая в катушке Lc током колебательного контура, периодически воздействует на сетку лампы и управляет анодным током, который в свою очередь с определенной частотой подзаряжает конденсатор, возмещая таким образом потери энергии в контуре. Такой процесс повторяется многократно в течение всего времени работы генератора.

Рассмотренный процесс возбуждения незатухающих колебаний в контуре называют самовозбуждением генератора, так как колебания в генераторе сами себя поддерживают.

Генераторы переменного тока

Электрический ток вырабатывается в генераторах - устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи и т.п. Область применения каждого из перечисленных видов генераторов электроэнергии определяется их характеристиками. Так, электростатические машины создают высокую разность потенциалов, но неспособны создать в цепи сколько-нибудь значительную силу тока. Гальванические элементы могут дать большой ток, но продолжительность их действия невелика. Преобладающую роль в наше время играют электромеханические индукционные генераторы переменного тока. В этих генераторах механическая энергия превращается в электрическую. Их действие основано на явлении электромагнитной индукции. Такие генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении.

В настоящее время имеется много типов индукционных генераторов. Но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС (в рассмотренной модели это вращающаяся рамка). Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока Ф = BS через каждый виток. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, - в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим. Этим обеспечивается наибольшее значение потока магнитной индукции. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходиться при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки. Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том же валу. В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны. Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Современный генератор электрического тока - это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Основные характеристики электротехнических материалов урок разработка презентация. Генератор переменного тока трансформатор производство передача и использование. Получение и передача переменного электрического тока Трансформатор. Устройства с постоянными магнитами для получения й электроэнергии. Получение электроэнергии при помощи генератора переменного тока. Доклад по дисциплине физика на тему применение трансформатором. Получение переменного тока с помощью индукционного генератора. Получение переменного тока с помощью индукционных генераторов. Генераторы переменного тока роль в производстве электроэнергии. Область применение промышленных генераторов переменного тока. Генераторы переменного тока и получения эдс переменного тока. Расчёт ЭДС в переменном магнитном поле.

Цель: 1) Изучить генератор, его устройство,
принцип его работы.
2) Детальное рассмотрение принципов
работы и устройства автомобильного
генератора.
3) Выполнить письменную
экзаменационную работу в связи с
окончанием курса автослесаря.

История генератора:
Изобретателем автомобильного генератора в
той форме, в которой он устанавливается и в
наши дни, был немецкий инженер Роберт Бош.
В 1887 он разработал низковольтное магнето
для стационарных двигателей, а к 1902 году –
магнето высокого напряжения, которое стало
прообразом показанной им в 1906 году
«световой машины», то есть первого
автомобильного генератора постоянного тока.
Аббревиатура "АГС"
расшифровывается
"Автомобильные Генераторы и
Стартеры"

Генератор - устройство, преобразующее
механическую энергию, получаемую от
двигателя, в электрическую

ВИДЫ ГЕНЕРАТОРОВ
Генераторы
постоянного тока
(не применяют на
современных
автомобилях)
Генераторы
переменного
тока
(используют в
настоящее время)

ГЕНЕРАТОРЫ ПОСТОЯННОГО
ТОКА
На автомобилях выпуска до
1960-х годов (например ГАЗ51, ГАЗ-69, ГАЗ-М-20
«Победа» и многих других)
устанавливались генераторы
постоянного тока
ГЕНЕРАТОРЫ ПЕРЕМЕННОГО
ТОКА
Первая конструкция генераторов
переменного тока была
представлена фирмой «Невиль»,
США в 1946 году.
Применяются на автомобилях
ГАЗ-53, ВАЗ-2101, Москвич-2140
Генератор переменного тока мощнее
долговечнее, дешевле, чем
генераторы постоянного тока

Основне части автомобильного генератора:
1)
2)
3)
4)
5)
6)
7)
8)
Шкив
Корпус
Ротор
Статор
Сборка с выпрямительными диодами
Регулятор напряжения
Щёточный узел
Защитная крышка диодного модуля

Принцип работы автомобильного
генератора:
Когда в замке зажигания
поворачивается ключ, на обмотку
возбуждения поступает ток через
щёточный узел и контактные кольца. В
обмотке наводится магнитное поле.
Ротор генератора начинает двигаться
с вращением коленчатого вала.
Обмотки статора пронизываются
магнитным полем ротора. На выводах
обмоток статора возникает
переменное напряжение. С
достижением определённой частоты
вращения, обмотка возбуждения
запитывается непосредственно от
генератора, то есть, генератор
переходит в режим самовозбуждения.

Неисправности генератора:

Электрические неисправности:
Износ щёток;
Обрыв или нарушения
контакта электрических
цепей;
Замыкания между
витками обмотки ротора;
Выход из строя, хотя и не
часто, диодного моста или
регулятора напряжения.
Механические неисправности:
Износ подшипников;
Вибрирующий ротор;
Растяжение и обрыв ремня
привода генератора.

ВЫВОД:

Генератор - очень сложное устройство, поэтому важно бережно относиться
к нему. Постоянно следите за состоянием всех его деталей, а также за
степенью натяжения приводного ремня. Тогда автомобильный генератор
сможет прослужить максимально долго.



Количественный рост использования энергии привел к качественному скачку ее роли в нашей стране: создалась крупная отрасль народного хозяйства - энергетика. В народном хозяйстве нашей страны важное место занимает – электроэнергетика. Атомная электростанция во Франции Каскад гидроэлектростанции





Если k > 1, то трансформатор повышающий. Если k 1, то трансформатор повышающий. Если k 1, то трансформатор повышающий. Если k 1, то трансформатор повышающий. Если k 1, то трансформатор повышающий. Если k title="Если k > 1, то трансформатор повышающий. Если k





Задача: Коэффициент трансформации трансформатора равен 5. Число витков в первичной катушке равно 1000, а напряжение во вторичной катушке - 20 В. Определите число витков во вторичной катушке и напряжение в первичной катушке. Определите вид трансформатора?


Дано: Анализ: Решение: k = 5 n2 = 1000: 5 = 200 n1 = 1000 U1 = 20 B * 5 = U2 = 20 B n2 = n1: k = 100 B U1 = U2 * k n2 - ? U1 - ? Ответ: n2 = 200; U1 = 100 В; трансформатор повышающий, так как k > 1. 1."> 1."> 1." title="Дано: Анализ: Решение: k = 5 n2 = 1000: 5 = 200 n1 = 1000 U1 = 20 B * 5 = U2 = 20 B n2 = n1: k = 100 B U1 = U2 * k n2 - ? U1 - ? Ответ: n2 = 200; U1 = 100 В; трансформатор повышающий, так как k > 1."> title="Дано: Анализ: Решение: k = 5 n2 = 1000: 5 = 200 n1 = 1000 U1 = 20 B * 5 = U2 = 20 B n2 = n1: k = 100 B U1 = U2 * k n2 - ? U1 - ? Ответ: n2 = 200; U1 = 100 В; трансформатор повышающий, так как k > 1.">



13





Статьи по теме: