Вирусы противоречат или подтверждают понятие жизнь. Можно ли назвать вирусы живыми существами? Какие признаки характерны для вирусов

Согласно Львову, “организм - некая независимая единица интегрированных и взаимосвязанных структур и функций”. У простейших, то есть у одноклеточных именно клетка является независимой единицей, иными словами, организмом. И клеточные организмы - митохондрии, хромосомы и хлоропласты - это не организмы, ибо они не являются независимыми. Получается, что если следовать определению, данным Львовым, вирусы не являются организмами, так как не обладают независимостью: для выращивания и репликации генетического материала нужна живая клетка.

В то же время, у многоклеточных видов независимо от того, животные или растения, отдельные линии клеток не могут эволюционировать независимо друг от друга; следовательно, их клетки не являются организмами. Для того чтобы изменение было эволюционно значимым, оно должно быть передано новому поколению индивидуумов. В соответствии с этим рассуждением организм представляет собой элементарную единицу некоторого непрерывного ряда со своей индивидуальной эволюционной историей

И в то же время, можно рассматривать данную проблему с точки зрения другого определения: материал является живым если, будучи изолированным, он сохраняет свою специфическую конфигурацию так, что эта конфигурация может быть реинтегрирована, то есть вновь включена в цикл, в котором участвует генетическое вещество: это отождествляет жизнь с наличием независимого специфического самореплицирующегося способа организации. Специфическая последовательность оснований нуклеиновой кислоты того или иного гена может копироваться; ген - это некая часть запасов информации, которой располагает живой организм. В качестве теста на живое данное выше определение предлагает воспроизведение в различных клеточных линиях и в ряде поколей организмов. Вирус, согласно этому тесту, живой точно так же, как и любой другой фрагмент генетического материала, что его можно извлечь из клетки, вновь ввести в живую клетку и что при этом он будет копироваться в ней и станет хотя бы на некоторое время часть ее наследственного аппарата. При этом передача вирусного генома составляет основной смысл существования этих форм - результат их специализации в процессе отбора. Поэтому специализированность вирусов как переносчиков нуклеиновых кислот дает возможность считать вирусы “более живыми”, чем какие либо фрагменты генетического материала, и “более организмами”, чем любые клеточные органеллы, включая хромосомы и гены.

Строгие постулаты Коха

Каковы же те основные положения, сформулированные Робертом Кохом (1843-1910), которых должен придерживаться микробиолог при каждом обнаружении неизвестного возбудителя? Что может служить доказательством, что именно он является причиной данного инфекционного заболевания? Вот эти три критерия:

Неоднократное получение чистой культуры возбудителя, взятого из организма больного.

Возникновение точно такого же или сходного заболевания (как по характеру течения, так и по вызываемым им патологическим изменениям) при инфицировании здорового организма культурой предполагаемого возбудителя.

Появление в организме человека или животного после их заражения данным возбудителем всегда одних и тех же специфических защитных веществ. При контакте иммунной сыворотки крови с возбудителем из культуры последний должен терять свои патогенные свойства.

Для современной вирусологии характерно бурное развитие и широкое применение самых различных методик - как биологических (включая генетические), так и физико-химических.. Они используются при установлении новых, до сих пор еще неизвестных вирусов, и при изучении биологических свойств и строения уже обнаруженных видов.

Фундаментальные теоретические исследования дают обычно важные сведения, которые используются в медицине, в области диагностики или при глубоком анализе процессов вирусной инфекции. Введение новых действенных методов вирусологии связано, как правило, с выдающимися открытиями.

Так например, метод выращивания вирусов в развивающемся курином эмбрионе, впервые примененный А.М.Вудрофом и Е.Дж.Гудпэсчуром в 1931 году, был с исключительным успехом использован при изучении вируса гриппа.

Прогресс физико-химических методов, в частности метода центрифугирования, привел в 1935 году к возможности кристалмуации вируса табачной мозаики (ВТМ) из сока больных растений, а в последствии и к установлению входящих в его состав белков. Этим был дан первый толчок к изучению строения и биохимии вирусов.

В 1939 году А. В. Арден и Г. Руска впервые применили для изучения вирусов электронный микроскоп. Введение этого аппарата в практику означало исторический перелом в вирусологических исследованиях,поскольку появилась возможность увидеть - хотя в те годы еще и недостаточно четко - отдельные частицы вируса, вирионы.

В 1941 году Г.Херст установил, что вирус гриппа при известных условиях вызывает агглютинацию (склеивание и выпадение в осадок) красных кровяных телец (эритроцитов). Этим была положена основа для изучения взаимоотношений между поверхностными структурами вируса и эритроцитов, а также для разработки одного из наиболее эффективных методов диагностики.

Коренной перелом и вирусологических исследованиях произошел в 1949 г., когда Дж. Эндерсу, Т. Уэллеру и Ф. Роббинсу удалось размножить вирус полиомиелита в клетках кожи и мышц человеческого зародыша. Они добились разрастания кусочков ткани на искусственной питательной среде. Клеточные (тканевые) культуры были инфицированы вирусом полиомиелита, который до этого изучали исключительно на обезьянах и лишь очень редко на особом виде крыс.

Вирус в человеческих клетках, выращенных вне материнского организма, хорошо размножался и вызывал характерные патологические изменения. Метод культуры клеток (длительное сохранение и выращивание в искусственных питательных средах клеток, выделенных из организма человека и животных) был впоследствии усовершенствован и упрощен многими исследователями и стал, наконец, одним из наиболее важных и результативных для культивирования вирусов. Благодаря этому более доступному и дешевому методу появилась возможность получать вирусы в относительно чистом виде, чего нельзя было достичь в суспензиях из органов погибших животных. Введение нового метода означало несомненный прогресс не только в диагностике вирусных заболеваний, но и в получении прививочных вакцин. Он дал также неплохие результаты и в биологических и биохимических исследованиях вирусов.

В 1956 году удалось показать, что носителем инфекционности вируса является содержащаяся в нем нуклеиновая кислота. А в 1957 году А.Айзекс и Дж.Линдеман открыли интерферон, который позволил объяснить многие биологические явления, наблюдаемые в отношениях между вирусом и клеткой - хозяином или организмом - хозяином.

С. Бреннер и Д. Хорн ввели в технику электронной микроскопии метод негативного контрастного окрашивания, сделавший возможным изучение тонкого строения вирусов, в частности их структурных элементов (субъединиц).

В 1964 году уже упоминавшийся нами ранее американский вирусолог Гайдузек с сотрудниками доказал инфекционный характер ряда хронических заболеваний центральной нервной системы человека и животных. Он изучал недавно обнаруженные своеобразные вирусы, лишь в некоторых чертах схожие с ранее известными.

В то же время американский генетик Барух Бламберг обнаруживает (в процессе генетических исследований белков крови) антиген сывороточного гепатита (австралийский антиген), вещество, идентифицируемое при помощи серологических тестов. Этому антигену суждено было сыграть большую роль в вирусологических исследованиях гепатита.

В последние годы одним из крупнейших успехов вирусологии можно считать раскрытие некоторых молекулярно-биологических механизмов превращения нормальных клеток в опухолевые. Не меньшие успехи были достигнуты и в области изучения строения вирусов и их генетики.

Инфекционная единица

Наименьшее количество вируса, способное в данном опыте вызвать инфекцию, называется инфекционной единицей.

Для ее определения применяются обычно два метода. Первый основан на определении 50 %-ной летальной дозы, которая обозначается LD 50 (от лат. Letatis - смертельная, dosis - доза). Второй метод устанавливает число инфекционных единиц по числу бляшек, образовавшихся в культуре клеток.

Что, в сущности, представляет собой величина LD 50 и как она определяется? Исследуемый вирусный материал разводится в соответствии со снижающимися степенями концентрации, скажем кратными десяти: 1:10; 1:100; 1:1000 и т.д. Каждым из растворов с указанными концентрациями вируса инфицируют группу животных (десять индивидуумов) или культуру клеток в пробирках. Потом наблюдают гибель животных или изменения, происшедшие в культуре под влиянием вируса. Статистическим методом определяется степень концентрации, способная умертвить 50 % животных из числа зараженных исходным материалом. При использовании культуры клеток следует найти такую дозу вируса, которая производит губительное действие на 50 % инфицированных ею культур. В этом случае употребляется сокращение ЦПД 50 (цитопатическая доза). Иначе говоря, речь идет о такой дозе вируса, которая вызывает повреждение или гибель половины инфицированных ею культур.

Cynthia Goldsmith This colorized transmission electron micrograph (TEM) revealed some of the ultrastructural morphology displayed by an Ebola virus virion. See PHIL 1832 for a black and white version of this image. Where is Ebola virus found in nature?

The exact origin, locations, and natural habitat (known as the «natural reservoir») of Ebola virus remain unknown. However, on the basis of available evidence and the nature of similar viruses, researchers believe that the virus is zoonotic (animal-borne) and is normally maintained in an animal host that is native to the African continent. A similar host is probably associated with Ebola-Reston which was isolated from infected cynomolgous monkeys that were imported to the United States and Italy from the Philippines. The virus is not known to be native to other continents, such as North America.

Попадают под определение жизни: они находятся где-то посредине между сверхмолекулярными комплексами и очень простыми биологическими организмами. Вирусы содержат некоторые структуры и демонстрируют определенные виды деятельности, которые являются общими для органической жизни, но им не хватает многих других характеристик. Они полностью состоят из одной цепи генетической информации, заключенной в оболочку белка. Вирусы испытывают недостаток большей части внутренней структуры и процессов, которые характеризуют «жизнь», включая биосинтетический процесс, необходимый для размножения. Чтобы (воспроизводится), вирус должен инфицировать подходящую клетку-хозяина.

Когда исследователи впервые обнаружили вирусы, которые вели себя как , но были намного меньше и вызывали такие заболевания, как бешенство и ящур, стало общеизвестно, что вирусы биологически «живы». Однако это восприятие изменилось в 1935 году, когда вирус табачной мозаики кристаллизировали, и показали, что у частиц не было механизмов, необходимых для метаболической функции. Как только было установлено, что вирусы состоят только из ДНК или РНК, окруженной белковой оболочкой, научной точкой зрения стало, что они являются более сложными биохимическими механизмами, чем живые организмы.

Вирусы существуют в двух разных состояниях. Когда он не контактируют с клеткой-хозяином, вирус остается полностью бездействующим. В это время внутри вируса нет внутренней биологической активности, и по существу вирус является не более чем статической органической частицей. В этом простом, явно неживом состоянии вирусы называются «вирионами». Вирионы могут оставаться в этом состоянии бездействия в течение продолжительных периодов времени, терпеливо ожидая контакта с соответствующим хозяином. Когда вирион входит в контакт с соответствующим хозяином, он становится активным вирусом. С этого момента вирус отображает свойства, типичные для живых организмов, такие как реагирование на окружающую среду и направление усилий на саморепликацию.

Что определяет жизнь?

Нет четкого определения того, что отделяет живое от неживого. Одним из определений может быть точка, в которой субъект имеет самосознание. В этом смысле, тяжелая травма головы, может классифицироваться, как смерть мозга. Тело и мозг могут все еще функционируют на базовом уровне, а также заметна метаболическая активность во всех клетках, составляющих большой организм, но предполагается, что нет самосознания, и следовательно, мозг мертв. На другом конце спектра критерием определения жизни является возможность передать генетический материал будущим поколениям, тем самым восстановив свое подобие. Во втором, более упрощенном определении, вирусы несомненно живы. Они, бесспорно, являются наиболее эффективными на Земле при распространении своей генетической информации.

Хотя нет окончательного решения вопроса о том, можно ли считать вирусы живыми существами, их способность передавать генетическую информацию будущим поколениям делает их основными игроками в разрезе эволюции.

Доминирование вирусов

Организация и сложность медленно увеличивались с того момента, когда макромолекулы начали собираться в изначальном супе жизни. Нужно задуматься о существовании необъяснимого принципа, прямо противоположного второму , который ведет эволюцию к высшей организации. Мало того, что вирусы были чрезвычайно эффективны при распространении собственного генетического материала, они также несли ответственность за несказанное перемещение и смешивание генетического кода между другими организмами. Вариабельность генетического кода, возможно, является движущей силой . Благодаря выражению переменных , организмы способны адаптироваться и стать более эффективными в изменяющихся условиях окружающей среды.

Заключительная мысль

Может быть, актуальный вопрос заключается не в том, живы ли вирусы, сколько в том, какова их роль в движении и формировании жизни на Земле, как мы ее воспринимаем сегодня?

С вирусами человечество познакомилось в конце IXX века, после работ Дмитрия Ивановского и Мартина Бейеринка. Изучая небактериальные поражения растений табака, ученые впервые проанализировали и описали 5 тысяч видов вирусов. Сегодня предполагается, что их миллионы и живут они везде.

Живой или нет?

Состоят вирусы из молекул ДНК и РНК, передающих генную информацию в различных комбинациях, оболочки, которая защищает молекулу, и дополнительной липидной защиты.

Наличие генов и способность размножаться позволяет причислить вирусы к живым, а отсутствие синтеза белка и невозможность самостоятельного развития относит их к неживым биологическим организмам.

Вирусы также способны вступать в союз с бактериями и . Они могут передавать информацию через обмен РНК и уходить от иммунного ответа, игнорируя лекарства и вакцины. Вопрос о том, является ли вирус живым, остается открытым до сих пор.

Самый опасный враг

Сегодня вирус, не реагирующий на антибиотики, - самый страшный враг человека. Открытие противовирусных препаратов немного облегчило положение, но СПИД и гепатиты до сих пор не побеждены.

Вакцины дают защиту лишь от некоторых сезонных штаммов вирусов, но их способность быстро мутировать делает прививки неэффективными уже на следующий год. Самой серьезной угрозой населению Земли может стать неспособность вовремя справиться с очередной вирусной эпидемией.

Грипп - только малая часть «вирусного айсберга». Гуляющая по Африке вирусная инфекция «Эбола», привела к введению карантинных мероприятий по всему миру. К сожалению, заболевание крайне сложно поддается лечению, и процент летальных исходов пока велик.

Особенностью вирусов стала их невероятно быстрая способность размножаться. Вирус-бактериофаг способен превосходить по скорости размножения бактерию в 100 тысяч раз. Поэтому спасти человечество от смертельной угрозы пытаются ученые-вирусологи всех стран мира.

Основными мерами профилактики вирусных инфекций являются: прививки, соблюдение правил личной гигиены и своевременное обращение к врачу в случае заражения. Одним из симптомов стала высокая температура, которую невозможно сбить самостоятельно.

Паниковать при вирусном заболевании не стоит, но осторожность может, в буквальном смысле, спасти вам жизнь. Врачи говорят, что мутировать инфекции будут столько, существовать человеческая цивилизация, и ученым предстоит сделать еще много важных открытий в происхождении и поведении вирусов, а также в борьбе с ними.


Первый шаг в ответ на вопрос являются ли вирусы живыми или мертвыми, водится к определению критериев живого и неживого. Давайте сравним вирусы с 7 критериями, которые исследователи установили, чтобы определить, жив или нет.

1. Живые существа должны поддерживать гомеостаз.
Гомеостаз — саморегуляция, способность системы сохранять постоянство своего внутреннего состояния. Может ли вирус контролировать свою внутреннюю температуру или ее внутреннее содержимое?
Ранее среди критериев жизни было — живые существа должны быть сделаны из клеток. Вирусы не состоят из клеток. Одна вирусная частица известна как вирион и состоит из набора генов, заключенных в защитную белковую оболочку, называемую капсидом. Некоторые вирусы имеют дополнительную мембрану (липидный биослой), окружающую ее, называемую оболочкой. У вирусов нет ядер, органелл или цитоплазмы, подобных клеткам, и поэтому у них нет способа контролировать или создавать изменения в их внутренней среде.
Возникает вопрос — может ли индивидуальный вирион самостоятельно поддерживать устойчивую внутреннюю среду. Хотя некоторые утверждают, что капсид и оболочка помогают вирионам противостоять изменениям в их состоянии. Существует общее соглашение, что вирусы не выдерживают это первое требование.
Тем не менее, очень немногие вещи в биологии не черно-белые, поэтому давайте посмотрим, как вирусы справляются с остальной частью списка, прежде чем принимать окончательное решение.
Вердикт: не соответствует условию

2. Живые существа имеют разные уровни организации.
Жизнь сложна, и живые организмы отражают эту сложность в своей структуре. Маленькие строительные блоки объединяются, чтобы сделать более крупный объект. Вирусы, безусловно, это делают. Они имеют гены, полученные из нуклеиновых кислот, и капсид, изготовленный из небольших субъединиц, называемых капсомерами.
Вердикт: Соответствует

3. Живые организмы воспроизводятся.
Один из основных законов в природе заключается в том, что вид передает свою генетическую информацию. Вирусы определенно размножаются. Хотя наша иммунная система, безусловно, может справиться с одним вирионом, но сотни тысяч вирионов, созданных за короткий промежуток времени, наверняка навредят нашим клеткам. Вирусы должны использовать клетки хозяина для производства большего количества вирионов. Поскольку у вирусов нет органелл, ядер или даже рибосом, у них нет инструментов, необходимых для копирования их генов, а тем более для создания новых вирионов. Вирусы попадают в живые клетки, захватывают контроль в клетке, чтобы начать производить новые вирусные частицы, построить новые капсиды и собрать все вместе. Обычно мы используем термин «репликация», а не размножение, чтобы указать, что вирусам нужна клетка-хозяин для умножения своего числа.
Вердикт: Может быть

4. Живые существа растут.
Живые существа растут. Они используют энергию и питательные вещества, чтобы стать крупнее и сложнее. Вирусы манипулируют клетками-хозяевами для создания новых вирусов, что означает, что каждый вирион создается в полностью сформированном состоянии и не будет увеличиваться по размеру и по сложности на протяжении всего существования. Вирусы не растут.
Вердикт: не соответствует

5. Живые существа используют энергию.
Этот критерий несколько сложный. Создание новых единиц вириона является одним из основных задач — от создания нуклеиновых кислот до производства капсидов — все это требует больших затрат энергии. Однако вся энергия, которая входит в эту конструкцию, исходит, как вы догадались, от хозяина. Вирусы определенно рассчитывают на метаболизм хозяина, стремяться добраться до него (возможно, это вампиры?).
Вердикт: Может быть

6. Живые существа реагируют на раздражители.
Независимо от того, реагируют ли вирусы на окружающую среду, это один из самых сложных вопросов. Ответ на стимул определяется почти немедленной реакцией на некоторое изменение окружающей среды. Хотя они не изменяют поведение в ответ на прикосновение или звук или свет, как это делают люди, бактерии или морские губки, не было проведено достаточно исследований, чтобы окончательно сказать, что вирусы ни на что не реагируют.
Вердикт: Неизвестно

7. Живые существа адаптируются к окружающей их среде.
Адаптация и эволюция происходят за счет непреднамеренных изменений (мутаций), которые выгодны для всего вида. Вирусы определенно приспосабливаются к их окружению. В отличие от предыдущего требования, требующего немедленного ответа, адаптация — это процесс, который происходит со временем. Вирус может жить в двух разных фазах — литической фазе (где вирус активно реплицируется в клетке-хозяине) и лизогенной фазе (где вирусная ДНК входит в ДНК клетки кратно всякий раз, когда клетка размножается). Иногда у хозяина не хватает энергии или расходных материалов, чтобы поддерживать вирус для активной репликации, поэтому он переключится на лизогенную фазу. Вирус может в конечном итоге вернуться в литическую фазу, когда будут подходящие условия.
Вердикт: Подходит

Статью перевела докт.вет-х наук Эйнгор М.А.

На вопрос, какие явления характеризуют жизнь, биологи отвечают, что каждый живой организм имеет специфические форму и величину, внешнюю и внутреннюю организации, с которыми связана и специализация отдельных органов; живому организму свойственны движение, реакция на внешние раздражения, рост, процесс обмена веществ и, наконец, такая важная особенность живых организмов, как способность размножаться. С размножением связана и возможность наследственных изменений.

Впрочем, некоторые из перечисленных критериев жизни можно обнаружить и в неживой природе. Мы найдем в ней и известную степень организации, и движение, и реакцию на раздражение, и рост. У кристаллов поваренной соли есть внешняя и внутренняя организации; протекающие в них химические реакции — своего рода проявление реакции на раздражение, то есть чувствительности; кристаллы и ледники растут; все тела фактически находятся в движении. Если такое движение и не проявляется наглядно, то постоянно движутся молекулы и атомы.

Однако неживые предметы не могут размножаться, следовательно, у них нет наследственных изменений. Таким образом, живое от неживого отличается прежде всего тем, что может размножаться и изменяться от поколения к поколению.

Посмотрим с этой точки зрения на вирусы и попытаемся разобраться, живые это существа или неживые. Химику они напоминают крупные молекулы, способные к кристаллизации. Есть у них и черты, общие с живыми организмами, — они могут размножаться (но только внутри живых клеток) и, как доказано в последнее время, подвергаться наследственным изменениям. Эту двойственность, это сочетание свойств как существа, так и вещества, подчеркнул Т. Риверс, когда называл их «органулами» или «молекизмами» (комбинация слов: организм и молекула).

Так куда же следует относить вирусы — к живым или неживым образованиям? Стэнли так ответил на этот вопрос:

«Живые ли они или неживые — об этом можно спорить до бесконечности, не получая, по существу, удовлетворительного ответа на поставленный вопрос. В одном отношении вирусы схожи с живыми организмами, в другом — с обычными химическими молекулами, но отличаются как от первых, так и от вторых. Их двойственный характер и сравнительно примитивная структура, которую мы в состоянии уже довольно подробно изучать, дают нам возможность видеть в них, с одной стороны, живые существа, а с другой — химические молекулы, способные к размножению. Тем самым мы приближаемся к пониманию химической сущности процесса размножения, протекающего во всех других живых организмах. Кроме того, изучение вирусов открывает перед нами новую перспективу, поскольку мы видим не две якобы резко отделенные друг от друга группы, а лишь их все более возрастающую сложность. С точки зрения структуры — имеем возможность проследить весь ряд тесно связанных между собой объектов: от атома через простую молекулу, макромолекулу, вирус, бактерию и далее через рыб и млекопитающих вплоть до человека. С функциональной точки зрения — можем наблюдать процесс использования энергии от случайного движения различных молекул до идеальной гармонии тончайших биологических ритмов».



Статьи по теме: